IFT-Perimeter-SAIFR
 Journeys into Theoretical Physics 2023
 Saturday Exam

- Write your name on each page
- Number each page used to solve a given problem as $1 / n, 2 / n, \ldots, n / n$ where n is the number of pages used to solve that problem
- Do not solve more than one problem per page - these exams will be split apart and graded by different people.
- Problem 1 (Relativistic Particle in Constant Electromagnetic Field): 25\%
- Problem 2 (Renormalization in Quantum Mechanics): 25%
- Problem 3 (Car Jams and Phase Transitions): 25\%
- Problem 4 (Confining Gravitational Motion): 25%
- Full Name:
- I am interested in applying to the IFT masters program even if I am not accepted into the PSI program: Yes No
- If accepted into any of the programs, I would be interested in starting my fellowship at the IFT in August 2023: Yes No
- The areas of physics which I am most interested in are:

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the harder parts on as many exercises as possible. This is a difficult exam, so do not be discouraged if you get stuck on an exercise.

1 Relativistic Particle in Constant Electromagnetic Field

Consider a particle of mass m and charge q with velocity \vec{v} moving in a constant electromagnetic background described by electric and magnetic fields \vec{E} and \vec{B} which are independent of space and time. The equation of motion for the particle is determined by the force law

$$
\begin{equation*}
\vec{f}=q \vec{E}+\frac{q}{c} \vec{v} \times \vec{B} \tag{1}
\end{equation*}
$$

1. [2pt] Suppose that $\vec{E}=(0,0, E)$ and $\vec{B}=(0,0,0)$. If the particle at time $t=0$ is at the position $x=y=z=0$ with velocity $\vec{v}=\left(0, v_{0}, 0\right)$, what is the trajectory $(x(t), y(t), z(t))$ for a non-relativistic particle when $|v| \ll c$?
2. [2pt] Now suppose that $\vec{E}=(0,0,0)$ and $\vec{B}=(B, 0,0)$. If the particle at time $t=0$ is at the position $x=y=z=0$ with velocity $\vec{v}=\left(0, v_{0}, 0\right)$, what is the trajectory $(x(t), y(t), z(t))$ for a non-relativistic particle when $|v| \ll c$?

The relativistic equation of motion for the particle is given by

$$
\begin{equation*}
\frac{d}{d t} P_{\mu}=\frac{q}{c} \frac{d X^{\nu}}{d t} F_{\mu \nu} \tag{2}
\end{equation*}
$$

where $P_{\mu}=m \gamma \frac{d X_{\mu}}{d t}$ is the relativistic momentum, $\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}, X^{\mu}=(c t, x, y, z)$ for $\mu=0$ to 3 , and $F_{\mu \nu}$ is the constant electromagnetic background defined by $F_{j 0}=-F_{0 j}=$ E_{j} and $F_{j k}=\epsilon_{j k l} B_{l}$ for $j=1$ to 3 . The signature convention used is $(-,+,+,+)$.
3. $[\mathbf{2 p t}]$ Show that the force law of eq (1) can be obtained from the relativistic eq (2).
4. [8pt] Redo question 1 for the relativistic case. Hint: First use eq (2) to find $\gamma(t)$, and then find $d X^{\mu} / d t$. To obtain $X^{\mu}(t)$, the formula $\frac{d\left(\sinh ^{-1}(A t)\right)}{d t}=A\left(1+(A t)^{2}\right)^{-\frac{1}{2}}$ may be useful.
5. [2pt] Show that the relativistic case of question 4 reduces to the non-relativistic case of question 1 when $|v| \ll c$.
6. [5pt] Redo question 2 for the relativistic case. Hint: First show that γ is independent of t.
7. [2pt] Consider \vec{E} and \vec{B} to be constant perpendicular vectors. Under what conditions can one boost to another referential frame where the electric field vanishes? What is the magnitude of \vec{B} in that case? Hint: $F_{\mu \nu} F^{\mu \nu}$ is a Lorentiz invariant.
8. [2pt] Show that if E and B are constant vectors which are not orthogonal we can not go to a frame without electric or magnetic field. Hint: Consider another simple Lorenz invariant in four dimensions involving the fully antisymmetric Levi-Civita symbol $\epsilon_{\mu \nu \rho \delta}$.

2 Renormalization in Quantum Mechanics

In this exercise we will explore the Hamiltonian

$$
\begin{equation*}
H=\sum_{n=0}^{\infty} E_{n}|n\rangle\langle n|-g|e\rangle\langle e| \tag{3}
\end{equation*}
$$

where $E_{n}=\omega n, g$ is a small positive real number and $|e\rangle$ is a normalized state in the Hilbert space which can be decomposed into a finite number of $|n\rangle$'s,

$$
\begin{equation*}
|e\rangle=\sum_{n=0}^{N} e_{n}|n\rangle \tag{4}
\end{equation*}
$$

where e_{n} are real numbers. The discussion below will not depend on N but it is important that N is finite; you can take it to be 4 say. In this problem we will consider the eigenvalue problem

$$
\begin{equation*}
H|\psi\rangle=E|\psi\rangle \tag{5}
\end{equation*}
$$

for the eigenstates $|\psi\rangle=\sum_{k} \psi_{k}|k\rangle$.
Suggestion: Read the full problem before starting to answer as the answer to some questions can be hinted at by the next questions...

The Eigenvalue Problem

1. [0.5pt] Show that the eigenvalue equation in terms of ψ_{k} is

$$
\begin{equation*}
\left(E_{k}-E\right) \psi_{k}=\gamma_{E} e_{k} \tag{6}
\end{equation*}
$$

where $\gamma_{E}=g\langle e \mid \psi\rangle$.
Now we have two situations
2. [3.5pt] Case one: For some $l, e_{l}=0$. What can you conclude about the eigenvalue and eigenstate corresponding to this l ? How is it related to the original eigenvalue and eigenstate? Can you also show the converse of this statement is also true?
Hint: Start the reasoning with, if the eigenvalue is such and such, suppose $e_{l} \neq 0$ and try to reach a contradiction.
From this we learn that the eigenvalue structure of H agrees with that of H_{0} whenever $e_{l}=0$.
3. $[\mathbf{0 . 5 p t}]$ Case two: Now let us look at the other case when $E_{k} \neq E$. In this case, we can immediately solve for ψ_{k}. What is ψ_{k} ?
4. [1pt] Now let us use the normalization condition of $|\psi\rangle$, which allows us to find γ_{E}. What is γ_{E} ?
5. [2pt] Use γ_{E} 's definition derive the characteristic equation

$$
\begin{equation*}
g \sum_{k=0}^{N} \frac{e_{k}^{2}}{E_{k}-E}=1 \tag{7}
\end{equation*}
$$

6. [3pt] Now let us suppose $e_{0} \neq 0^{1}$. Consider $E<0$, how does the left hand side of the characteristic equation change as we increase E ? What is the range of value for the left hand side of the characteristic equation? What can you say about the solution of the characteristic equation when $E<0$?
7. [2.5pt] Now for $e_{k} \neq 0$, consider $E_{k}<E<E_{k+1}{ }^{2}$. Can you make a similar argument about the left hand side of the characteristic equation as before? What can we say about the solution?
These are the ones we found in case two.
8. [3pt] So what is the effect of the interaction? What happens to the eigenvalues when $e_{k}=0$? What happens to the eigenvalues when $e_{k} \neq 0$? Do they increase, decrease, or stay the same? Does it make sense?

Hint: compare to the form of the interacting Hamiltonian.

Renormalization

There is a problem when we consider our characteristic equation at tiny coupling constant g and large $\sum_{E_{k} \neq 0} \frac{e_{k}^{2}}{E_{k}}$. Focus on $E<0$ and approach the first eigenvalue - the negative one we found above - from the left.
9. [3pt] Show that a small error in g could now lead to a big error in the energy determination of this first eigenvalue.
Thus we should change our variable to something the solution does not so sensitively depend on. Here is a proposal:

$$
\begin{equation*}
g=g(\Delta) \equiv\left(\sum_{k=0}^{N} \frac{e_{k}^{2}}{E_{k}+\Delta}\right)^{-1} \tag{8}
\end{equation*}
$$

where $\Delta>0$.
10. [2pt] What is the range of this function? And what other property does it have so that our problem can be described by Δ instead of g ?
11. [2pt] Put this back in the characteristic equation. What is an obvious eigenvalue? How could we interpret Δ physically?

[^0]12. [2pt] Show that the new renormalized g independent characteristic equation for nontrivial eigenvalue is
\[

$$
\begin{equation*}
\sum_{k=0}^{N} \frac{e_{k}^{2}(E+\Delta)}{\left(E_{k}+\Delta\right)\left(E_{k}-E\right)}=0 \tag{9}
\end{equation*}
$$

\]

Because it is g independent, the previous problem of sensitivity respect to g is solved - for all eigenvalues in fact!
We can make the same argument about the sliding eigenvalues as before and they are not very sensitive to Δ. It was thus a good idea to renormalize g and switch to a more physical measure of the coupling given by Δ.

3 Car Jams and Phase Transitions

Figure 1: Cars start at locations $x_{i}(0)<x_{i+1}(0)$ on the circle and move without collisions.
Consider a sequence of cars on a one dimensional circular ring as depicted in figure 1. Time, the location x_{i} of car i and its velocity v_{i} will all be discrete in this problem:

$$
\begin{equation*}
t \in\{0,1,2,3, \ldots\}, \quad x_{i}(t) \in\{1,2,3, \ldots, L\}, \quad v_{i}(t) \in\left\{0,1,2,3, \ldots, v_{\max }\right\} \tag{10}
\end{equation*}
$$

At time $t=0$ we start with a random distribution of N cars on the circle with $x_{i}(0)<$ $x_{i+1}(0)$ each with a random velocity $v_{i}(0) \in\left\{0,1,2,3, \ldots, v_{\max }\right\}$. Then as t moves in integer steps, the car locations and velocities are updated according to

$$
\begin{equation*}
x_{i}(t+1)=\left[x_{i}(t)+v_{i}(t+1)\right] \tag{11}
\end{equation*}
$$

where $[\ldots]$ stands for $\ldots \bmod L$ (in other words, it is the distance on the ring) and where

$$
v_{i}(t+1)=\max \left(\begin{array}{ll}
0,-r_{i}(t)+\left\{\begin{array}{ll}
\min \left(v_{i}(t)+1, v_{\max }\right) & \text { if }\left[x_{i+1}(t)-x_{i}(t)\right]>v_{i}(t)+1 \\
{\left[x_{i+1}(t)-x_{i}(t)\right]-1} & \text { if }\left[x_{i+1}(t)-x_{i}(t)\right] \leq v_{i}(t) \\
v_{i}(t) & \text { otherwise }
\end{array}\right) .
\end{array}\right.
$$

where $r_{i}(t)=1$ with probability p and $r_{i}(t)=0$ with probability $1-p$.

1. [4pt] How do you interpret the position and velocity updating rules?
2. [2pt] Explain why cars never crash in this model.

Figure 2: Three simulations where cars move on a ring. Time moves up.
3. [2pt] In figure 2 we depict the outcomes of three different simulations simulations with $L=200, N=25, v_{\max }=5$ and different breaking probability $p=0,1 / 2$ and 1. Which simulation in the figure corresponds to each of these p values? Explain.
4. [3pt] Let $n_{i}(t)=1$ if site i is occupied at time t and 0 otherwise. Let $m_{i}(t)=1$ if a car passed through site i at time t, and 0 otherwise. More precisely $m_{i}(t)=1$ is there was a car at $X \leq i$ at t which is at $Y>i$ at $t+1$. Then we define

$$
\begin{equation*}
\rho_{i}(T)=\frac{1}{T} \sum_{t=0}^{T} n_{i}(t), \quad q_{i}(T)=\frac{1}{T} \sum_{t=0}^{T} m_{i}(t) \tag{12}
\end{equation*}
$$

What is the meaning of these quantities?
5. [2pt] In figure 3 we depict histogram of ρ_{i} and q_{i} for a given simulation for three different times $T=50,200,4000$. Which curve is which? Explain your answer. What do we expect for the i dependence of these quantities as $T \rightarrow \infty$?

Figure 3: For a same simulation we plot ρ_{i} and q_{i} for $i=L / 4, \ldots 3 L / 4$. The three curves correspond to three different T 's.
6. [2pt] Estimate the number of cars N for the simulations depicted in figure 3 .
7. [4pt] Let ρ and q be the asymptotic average of ρ_{i} and q_{i} as $T \rightarrow \infty$ and

$$
\begin{equation*}
M \equiv 1-\frac{q}{v_{\max } \rho} \tag{13}
\end{equation*}
$$

be an order parameter. What range can M take? How would you describe a car flow with $M=1$? What about $M=0$?

Figure 4 depicts M for several car densities ρ and breaking probabilities p.
8. For $p=0$ one can actually derive the exact curve $M(\rho)$. It is given by

$$
M= \begin{cases}0 & \text { for } \rho<\rho_{c} \tag{14}\\ A \frac{\rho-\rho_{c}}{\rho \rho_{c}} & \text { for } \rho \geq \rho_{c}\end{cases}
$$

(a) [3pt] What is the value of the constant A as a function of the critical density ρ_{c} ?
(b) [3pt] What is the value of the critical density ρ_{c} as a function of the maximum velocity $v_{\max }$?

Hint: Think of the last most packed free stationary flow before a jam forms.

Figure 4: $M(\rho)$ for various simulations with L and N very large ("thermodynamic"limit).

4 Confining Gravitational Motion

Consider a system of N non-relativistic particles that interact via an attractive force proportional to the distance between particles

$$
\begin{equation*}
\vec{F}_{j i}=-k m_{i} m_{j}\left(\vec{r}_{i}-\vec{r}_{j}\right) \tag{15}
\end{equation*}
$$

where $i, j=1,2, \ldots, N$ and $m_{i}>0$ is the mass of particle i. To be clear, $\vec{F}_{j i}$ is the force exerted on particle i by particle j. At the initial time $t=0$ these particles have some given initial positions $\vec{r}_{i}^{(0)}$ and velocities $\vec{v}_{i}^{(0)}$.

1. [5pt] Write down the equation of motion for particle i. What is the sign of k ?
2. [5pt] What is the acceleration of the center of mass \vec{R} ? Derive that result from the equation of motion of the previous point. How will \vec{R} evolve in time?
3. [2pt] Show that the total angular momentum $\vec{L}=\sum_{i} m_{i}\left(\vec{r}_{i}-\vec{r}_{0}\right) \times \dot{\vec{r}}_{i}-$ around any constant reference point \vec{r}_{0} - is conserved. When is \vec{L} independent of the reference point \vec{r}_{0} ?
4. [2pt] Is the kinetic energy $K=\sum_{i} \frac{m_{i}}{2} \dot{\vec{r}}_{i} \cdot \dot{\vec{r}}_{i}$ conserved? If yes, why? If no, which quantity involving the kinetic energy is conserved?
5. [3pt] How do the equations of motion look like in the center of mass (CM) frame?
6. [8pt] Show that in the CM frame all particles follow ellipses with the same time period T. What is T ? What is the center of the ellipses? What sets the shape of the ellipses?

[^0]: ${ }^{1}$ the argument still works if $e_{0}=0$, we simply discard the first few 0 cases until we have a non-zero
 ${ }^{2}$ Assuming $e_{k+1} \neq 0$. If it is not again we can discard the zero case and take the first non-zero case.

