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Scores:
• Problem 1 (Self Avoiding Walks): 25%
• Problem 2 (Special Relativity with a Compact Direction): 25%
• Problem 3 (Angular Momentum Paradox): 25%
• Problem 4 (SUSY Quantum Mechanics): 25%

◦ Full Name:
◦ I am also interested in applying for the Princeton/CUNY program in biological physics:

Yes No
◦ I am interested in applying to the IFT masters program even if I am not accepted into
the PSI or Princeton/CUNY program: Yes No
◦ If accepted into any of the programs, I would be interested in starting my fellowship
at the IFT in August 2018: Yes No
◦ The areas of physics which I am most interested in are:

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the
harder parts on as many exercises as possible. This is a difficult exam, so do not be
discouraged if you get stuck on an exercise.
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1 Self Avoiding Walks (SAWs)
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d=2 SAW (with 17 steps)

Figure 1: Self Avoiding Walks are paths with n steps on a d dimensional lattice starting
at the origin. At each step connects o point to one of its 2d neighbours. The key
constraint defining the self-avoiding paths is that no point is visited twice.

SAW are paths starting at the origin and moving in a lattice (here taken to be a
cubic lattice) without ever visiting the same site twice as illustrated in figure 1. Such
objects turn out to be relevant for the study of long polymers whose roughly random
shape resembles that of a SAW. In this exercise we will study some of the properties of
the statistics of such paths.

Some inequalities

Let c
(d)
n be the number of SAW of length n in a d-dimensional cubic lattice as represented

in figure 1. (c
(d)
0 = 1 for the empty path.)

1. [3pt] Show that
dn < c(d)n ≤ 2d(2d− 1)n−1 . (1)

2. [3pt] Show that

c
(d)
n+m ≤ c(d)n c(d)m (2)

Never Look Back SAWs (NLB-SAWs)

In this section we consider a subset of SAW called the NLB-SAWs which are 2d SAW in
a semi-infinite {0, 1} × N strip which never move to the left, see figure 2. Let cn be the
number of such paths of length n.
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Figure 2: SAW starting on the origin and moving inside the semi-infinite strip {0, 1} ×
{0, 1, 2, 3, . . . } with the key constraint that the paths never move to the left. These are
called Never Look Back SAW or NLB-SAW. In a given path, the last step can be vertical
(as in the top figure) or horizontal (as in the middle and bottom examples).

3. [3pt] Let vn be the number of paths whose last step is vertical and hn be the
number of paths whose last step is horizontal. Show that

hn+1 = vn + hn , vn+1 = hn . (3)

Hint: Note the three examples in figure 2.

4. [3pt] Show that cn obeys a simple recursion relation and work out the first few
cn’s up to n = 5. (You should find c4 = 8.)

5. [3pt] Show that
cn = A+λ

n
+ + A−λ

n
− (4)

and find A± and λ±. How does cn behave at large n?

Hint: λ+ = 1+
√
5

2
.

NLB-SAW with gravity

We now consider a toy model where we study the exact same paths as in the previous
section with the extra addition of gravity. More precisely, we consider the partition
function

Z =
∑

NLB-SAWs

e−βgH−βµn (5)

where n is the number of steps of a the Never Look Back SAW in the strip and H is the
number of sites in the upper row for that path (In figure 2, for instance, we have n = 11

3



0.5 1.0 1.5 2.0 2.5 3.0
βg

0.05

0.10

0.15

0.20

0.25

limℕ→∞
ℍ

ℕ

(a)

0.5 1.0 1.5 2.0 2.5 3.0
βg

0.1

0.2

0.3

0.4

0.5

limℕ→∞
ℍ

ℕ

(b)

0.5 1.0 1.5 2.0 2.5 3.0
βg

0.1

0.2

0.3

0.4

0.5

limℕ→∞
ℍ

ℕ

(c)

0.5 1.0 1.5 2.0 2.5 3.0
βg

0.05

0.10

0.15

0.20

0.25

limℕ→∞
ℍ

ℕ

(d)

Figure 3: Fraction of time the NLB-SAW paths spend on the top row as a function of
the gravity parameters. Only one of these plots is the correct one, see problem 7.

for all examples and H = 6, 7, 6 for the top, middle and bottom NLB-SAW respectively.)
The gravitational constant g, the inverse temperature β and the chemical potential µ
are all constants. In the last point we discuss the computation of the partition function.
For now you can use the result

Z =
eβµ + e4βµ+2βg

e2βµ+βg − e3βµ+βg − e3βµ+2βg + e4βµ+2βg − 1
. (6)

6. [3pt] Compute the average length and average height as a function of the gravity
constant g, the chemical potential µ and the inverse temperature β,

N =
1

Z

∑
NLB-SAWs

n e−βgH−βµn , H ≡ 1

Z

∑
NLB-SAWs

H e−βgH−βµn (7)

Hint: The expressions are kind of ugly, no need to try to simplify them.

7. [3pt] From the previous results we can eliminate µ to get H(N, βg). (In practice
this is hard to do analytically.) We can then study the ratio of points in the upper
row to the total number of points for very large polymers, r ≡ lim

N→∞
H/N .

What do you expect to obtain for very small gravity βg � 1 or very large gravity
βg � 1? One of the plots in figure 3 is the correct plot for this ratio; which one?

8. [4pt] Explain what would your strategy be to establish (6). (If you derive this
expression even better of course but since the computation is somehow non-trivial,
an explanation of the steps involved is enough.)
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2 Special Relativity with a Compact Dimension

Suppose we live in a universe where one of the 3 spatial dimensions has a large finite
length L and is periodic. In other words, the spacetime point (t, x, y, z) is identified with
the spacetime point (t, x+ nL, y, z) for any integer n.

1. Suppose there was a supernova explosion at time t = t0 and at position (x, y, z) =
(x0, y0, 0) in the reference frame of a stationary observer on Earth who is located at
the position (x, y, z) = (0, 0, 0). At the time of the explosion, the star was moving
at velocity v in the y direction.

(a) [3pt] When will the observer on Earth see the supernova explosion?

Hint: He will receive multiple signals of the explosion.

(b) [6pt] If the supernova explosion emits light of frequency f , find the frequency
of the light observed on Earth for the various signals received

Hint: You can check that for x0 = 0 your formula reduces to the familiar
Doppler shift.

2. We will now consider the twin paradox in this universe with one compact dimension.
One of the twins is on Earth and the other twin is flying on a rocket with constant
velocity v in the x direction. So from the point of view of the twin in the rocket,
the twin on Earth is flying with a constant velocity −v. The twins synchronize
their watches to t = t′ = 0 when the rocket flies by Earth. Each time the rocket
makes one trip around the universe, it will fly by Earth and the twins can compare
their ages.

(a) [5pt] Suppose the twin in the rocket ship emits a signal of frequency f at
time t in his reference frame. When is the signal observed by the twin on
Earth and what is the observed frequency?

(b) [3pt] Suppose the twin on Earth emits a signal of frequency f ′ at time t′ in
his reference frame. When is the signal observed by the twin on the rocket
and what is its observed frequency?

(c) [5pt] When the twins cross paths after the rocket makes one trip around the
universe, what (if any) is the difference in their ages?

(d) [3pt] Compare with the usual twin paradox where one twin stays on Earth
and the other twin departs on a rocket first with velocity v and then returns
with velocity −v. Explain the reason for any different conclusions between
the usual twin paradox and this new situation.
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3 Angular Momentum Paradox

Note that there are some potential useful formulae at the bottom of this exercise.
Before we start the problem proper, let’s deduce a relevant quantity:

1. [4pt] Show that the density of momentum carried by electromagnetic fields in
vacuum is given by:

~̃p =
~E × ~B

µ0c2
(8)

and keep in mind that the density of angular momentum will be given by ~̃L = ~r× ~̃p.

Now, consider the following setup: two coaxial nonconducting cylindrical shells with
very long lengths l. The smaller shell, “cylinder A”, has radius a and a total uniformly
distributed charge Q. The bigger shell, “cylinder B”, has radius b and charge −Q (also
uniformly distributed). These two cylinders are free to rotate around their axes. They
are inside a equally long and coaxial solenoid of radius R (R > b > a) which is carry-
ing a constant current I, generating a constant magnetic field B0 in the region of the
cylinders. Both cylinders are initially at rest. From this initial static setup, imagine the

Figure 4: transversal cut of the setup described in the text

current on the solenoid is decreased to zero (without any external force applied to the
system, e.g. the solenoid is a superconductor slowly heating up, and suddenly becomes a
normal conductor above some critical temperature, which then starts to kill the current
by resistance).

2. [4pt] Show that the instantaneous eletric field induced by the changing field ~B at
radius r is given by:

~E =
r

2

∣∣∣∣dBdt
∣∣∣∣ ϕ̂, (9)

where B = | ~B| and ϕ̂ is the counterclockwise direction in figure 4.
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3. [4pt] Find the angular momentum gained by each cylinder by the end, when the
solenoid magnetic field has decreased to zero. (Assume that the two cylinders
are rotating slowly enough that you can completely disregard the magnetic fields
generated by them).

4. [4pt] Calculate the electric field in all regions of space in the initial static situation.

5. [5pt] Is angular momentum conserved? If so, show it quantitatively.

6. [4pt] Now imagine we repeat the experiment without“cylinder B”. Discuss angular
momentum conservation in this case.

Useful formulae:

∇× ~E = −∂
~B

∂t
(Faraday’s Law) (10)

∇× ~B = µ0ε0
∂ ~E

∂t
+ µ0J (Ampère’s Law) (11)

∇. ~E =
ρ

ε0
(Gauss’s Law) (12)

∇. ~B = 0 (13)

~S =
~E × ~B

µ0

(Poynting Vector) (14)
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4 Supersymmetric Quantum Mechanics

Consider a spin 1/2 particle moving in a line in the presence of some external poten-
tial V (x) and of some magnetic B(x). The Schrödinger equation with the Hamiltonian

H =

(
− ~2

2m

d2

dx2
+ V (x)

)
I +B(x)σ3 , (15)

has two components. (In what follows we set ~ = 2m = 1 to simply the analysis.)
Furthermore we take

V (x) =

(
dW

dx

)2

, B(x) =
d2W

dx2
. (16)

As we will see with this choice this model becomes quite special: it is supersymmetric.
Studying it will also allow us to unveil remarkable relations between otherwise unrelated
Schrödinger problems of the form

−ψ′′(x) + V (x)ψ(x) = E ψ(x) . (17)

We use the following representation of the Pauli matrices:

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (18)

1. [2pt] Show that [H, σ3] = 0.

This means we can assign a definite spin in the z direction to each eigenstate. In other
words, whatever results we derive will apply to the two bosonic Schrödinger problems
given by the top and bottom component of the spin 1/2 equation Hψ = Eψ where ψ is
a two-component object and the Hamiltonian is given by (15).
Consider next the operators

Q =
1

i

(
d

dx
+
dW

dx

)
σ+ and Q† =

1

i

(
d

dx
− dW

dx

)
σ− . (19)

They obey the so-called su(1|1) super-algebra given by

{Q,Q†} = H , {Q,Q} = {Q†, Q†} = 0 , [Q,H] = [Q†, H] = 0 . (20)

where {A,B} ≡ AB + BA is called the anti-commutator and [A,B] = AB − BA is the
usual commutator.

2. [2pt] Derive one of the relations in (20).

3. [2pt] Show that all energies En ≥ 0.

4. [2pt] Show that the ground state energy vanishes E0 = 0 if and only if Qψ0 =
Q†ψ0 = 0.

8



-1.0 -0.5 0.5 1.0

-5

5

10

15
Two SUSY Partner Potentials

V1=x10-5 x4

V2=x10+5 x4

Figure 5: Although the potentials V1 and V2 look very different - one is a simple well while
the other is a double well - their spectrum is related in a very simple way as a consequence
of problem 6. Namely, the energy E

(1)
n+1 of any excited state ψ

(1)
n+1 for potential V1 is the

same as the energy E
(2)
n of the state ψ

(2)
n for the problem with potential V2. That is

E
(1)
n+1 = E

(2)
n except for the ground state energy of V1 which is unpaired.

5. [2pt] Show that these conditions lead to

ψ0 =

(
AeW (x)

B e−W (x)

)
(21)

where A and B are constants. Suppose W (x)→∞ as x→ ±∞. What should we
take for these constants?

6. [3pt] Consider now excited states. Show that they come in degenerate spin-
up/spin-down states related by the action of Q.

7. [2pt] As an application, we can now relate seemingly unrelated standard bosonic
Schrödinger problems of the form (17): one with V (x) given by V1(x) = x10− 5x4,
and another with a potential V2(x) = x10 + 5x4, see figure 5

Show that these potentials are such that the two problems can be thought of as
two components of a same SUSY problem (15), (16).

Potentials V1 and V2 with such property are SUSY partner potentials.

8. A pair of SUSY partner potentials V1, V2 is shape invariant if

V2(x; a1) = V1(x; a2) +R(a1) (22)

where a1 is a parameter, a2 = f(a1), andR(a1) is independent of x. The Schrödinger
problem for V1 has a ground state with zero energy. Shape invariance can be used
to determine the exact spectrum in many cases.
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(a) [2pt] By constructing a sequence of shape invariant SUSY partner potentials
show that the nth energy eigenvalue for n > 0 for the potential V1 is

E(1)
n =

n∑
k=1

R(ak) (23)

where ak+1 = f(ak).

(b) [2pt] Show that the potentials

V1(x;B) = B2 −B(B + 1)sech2x (24)

and
V2(x;B) = B2 −B(B − 1)sech2x (25)

are SUSY partners.

(c) [2pt] Show that the potentials

V1(x;B) = B2 −B(B + 1)sech2x (26)

and
V2(x;B) = B2 −B(B − 1)sech2x (27)

are shape invariant.

(d) [2pt] Determine the spectrum of V1(x;B) = B2 −B(B + 1)sech2x.

(e) [2pt] How many bound states does V1(x;B) = B2 −B(B + 1)sech2x have?
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