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1



1 Speed of Light vs Speed of Gravity

In 2017, the collision of two neutron stars was used to put bounds on alternative theories
of general relativity which predict a mass for the graviton. When the two neutron stars
collided, an electromagnetic wave and gravitational wave were simultaneously emitted.
(We will ignore any possible delay between the two emissions.)

Assuming that electromagnetic waves consist of massless photons which move with
the velocity of light c and that gravitational waves consist of gravitons of mass m and
energy E, measuring the difference in arrival times of the two waves can be used to put
a bound on mc2/E.

At the time of the collision and in the reference frame of the center of mass of the
neutron star collision, suppose the Earth is at a distance D′ from the neutron stars and
the Earth is moving away radially with constant velocity vEarth.

1. [10pt] Compute mc2/E in terms of (∆t,vEarth,D′) where E is the energy of the
graviton observed in the reference frame on Earth and ∆t = t−tem is the difference
in arrival times on Earth (t is the arrival time of the gravitational wave and tem is
the arrival time of the electromagnetic wave).

2. [4pt] Compute mc2/E ′ in terms of (∆t,vEarth,D′) where E ′ is the energy of the
graviton emitted in the reference frame of the neutron star collision.

3. [6pt] Assuming that vEarth is much less than c, compute the leading-order con-
tribution in vEarth/c to E ′/E and compare with the leading-order contribution in
vEarth/c to E ′em/Eem where Eem is the energy of the electromagnetic wave observed
on Earth and E ′em is the energy of the electromagnetic wave emitted by the neutron
star collision.

4. [5pt] In the 2017 neutron star collision, D′ = 1×1024 meters and ∆t was less than
2 seconds. Ignoring contributions from vEarth

c
, what is the bound on mc2

E
?

Some useful formulae: E = mγc2, γ = 1/
√

1− (v
c
)2, c = 3× 108 meters/second.
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2 Inevitability of Bound-states

We will consider one and two dimensional Schrodinger problems Hψ = Eψ where

H = − ~2

2m

d2

dx2
+ V (x)

in one dimension and

H = − ~2

2m

( d2
dr2

+
1

r

d

dr
+

1

r2
d2

dθ2

)
+ V (r, θ)

in (polar coordinates in) two dimensions. We consider V (x) ≤ 0 with lim
x→±∞

V (x) = 0

and V (r, θ) ≤ 0 with lim
r→∞

V (r, θ) = 0 so that these potentials are attractive wells.

The goal of this problem is to show that for these attractive potentials there is a
ground state with energy E0 < 0. In other words, these potential wells in 1D and 2D
always support at least one bound-state, no matter how shallow they might be. This is
non-trivial: The analogue statement is not true in 3D for example.

Variational Method Recap

1. [1pt] Show that for any normalizable trial wave function ψ, in any dimension,

E0 ≤
〈ψ|H|ψ〉
〈ψ|ψ〉 (1)

Hint: You can consider ψ to be a linear combination of all eigenstates ψn including
the ground-state ψ0.

One dimension

The idea is to consider a trial wave function a trial gaussian wave function ψ(x) = N e−αx2
to show it produces a negative variational estimate of the energy. The following formula
might be useful: ∫ ∞

−∞
e−Ax

2/2dx =
√

2π/A .

2. [1pt] Show that

Eα ≡
∫
dxψ∗(x)Hψ(x)∫
dxψ∗(x)ψ(x)

=
~2α
2m

+

√
2α

π

∫
e−2αx

2

V (x)

3. [2pt] We want to α to be such that this quantity is minimized. What equation
should α satisfy?
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4. [3pt] Show that the minimum value of Eα, Emin
α , obeys

Emin
α =

√
4α

2π

∫
dx(1 + 4αx2)e−2αx

2

V (x)

5. [3pt] Show that all purely attractive wells support a bound-state in one dimensions.

Two dimensions

It will be enough to consider a radial trial wave functions ψ(r, θ) = φ(r) with a real
φ(r) which will depend on a variational parameter α. We consider normalizable wave
functions and define

C(α) ≡ 〈ψ|ψ〉 = 2π

∞∫
0

dr r φ2(r) <∞ .

Henceforth we set ~ = m = 1.

6. [3pt] Show that

Eα =
〈ψ|H|ψ〉
〈ψ|ψ〉 =

1

C(α)

π ∞∫
0

dr r

(
dφ(r)

dr

)2

+

2π∫
0

dθ

∞∫
0

dr r φ(r)2 V (r, θ)

 (2)

7. Consider a large class of trial wave functions of the form φ(r) = f(h(α)r). for any
function h(α) ≥ 0 and any function f .

(a) [1pt] Show that this includes any wave function ψ = exp(−αrn) including
the gaussian wave function.

(b) [2pt] Show that for any such trial wave function φ(r) = f(h(α)r) the first
term in (2) (the kinetic term) is generically much larger than the second term
in (2) (the potential terms) for very shallow potentials.

(c) [3pt] Show that for shallow enough potentials such class of wave functions
always yield Eα > 0. What can we conclude about the existence (or not) of
bound-states for shallow potentials?

8. Consider then
φ(r) = e−(r+r0)

α

(3)

with r0 and α both positive. (r0 ensures φ(r) always has a finite derivative at
r = 0.) Note that this does not fit into the large class of potentials of the previous
point. The variational energy (2) becomes

Eα =
1

C(α)

π ∞∫
0

dr r α2(r + r0)
2α−2e−2(r+r0)

α

+

2π∫
0

dθ

∞∫
0

dr r e−2(r+r0)
α

V (r, θ)
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(a) [1pt] We focus first on the kinetic term. Show that

∞∫
0

dr r (r + r0)
2α−2e−2(r+r0)

α

<

∞∫
0

dr (r + r0)
2α−1e−2(r+r0)

α

<

∞∫
0

dt e−2t
α

t2α−1

(b) [2pt] Show that

Eα ≤
1

C(α)

πα/4 +

2π∫
0

dθ

∞∫
0

dr r e−2(r+r0)
α

V (r, θ)

 (4)

(c) [3pt] Show that all purely attractive wells support at least one bound-state
in two dimensions.
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3 Semi-Classical Quantization of the Dirac Monopole

The goal of this exercise is to semi-classically derive the quantization of the magnetic
charge g.

Maxwell Equations with Magnetic Sources and the Magnetic
Monopole

The Maxwell equations in the presence of both electric and magnetic sources read

~∇ · ~E =
ρ

ε0
, ~∇× ~B − 1

c2
∂

∂t
~E = µ0

~j , (5)

~∇ · ~B = µ0ρm , ~∇× ~E +
∂

∂t
~B =

~jm
ε0
. (6)

1. [4pt] Show that with these new sources the modified Maxwell equations preserve

“Maxwell duality”: a symmetry under ~E → ~B, ~B → − 1
c2
~E. How do the sources

transform under this symmetry?

2. [5pt] The Dirac monopole solution is the solution for a point-like magnetic source,
the analog of the electron, satisfying

~∇ · ~B = µ0gδ
3(~x). (7)

Write down the form of ~B for this solution.

Angular Momentum

The angular momentum stored in an electromagnetic field generalizes the momentum
expression you might know as

~L = ε0

∫
dV ~x× ( ~E × ~B) (8)

We will compute this angular momentum for a system comprised of a point-like electric
charge and a point-like magnetic charge separated by ~a as depicted in figure 1.

4. [4pt] Show that

~L = ε0

∫
dV ~x× (~∇φ× ~∇φ̄) (9)

where φ = q
4πε0

1
|~x−~a/2| is the electric potential obeying

∇2φ = − q
ε0
δ3(~x− ~a/2) . (10)

What is φ̄ and what equation does it satisfy?
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Figure 1: Thomson’s dipole: An electric point particle at +~a/2 with electric charge q
and a magnetic monopole at −~a/2 and magnetic charge g.

5. [3pt] Introducing the vector

~C ≡ ε0
2

(φ~∇φ̄− φ̄~∇φ) (11)

with the nice property ~∇× ~C = ε0~∇φ× ~∇φ̄ and using the identity

~x× (~∇× ~C) = ~∇(~C · ~x)− ~∇ · (~x~C) + 2~∇ · (~C~x)− 2~x(~∇ · ~C) (12)

show that
~L = −2

∫
dV ~x(~∇ · ~C) . (13)

6. [5pt] Show that
~L =

µ0

4π
gq â (14)

where â is the unit vector in the direction ~a connecting the magnetic and electric
charge. We conclude that the magnitude of the angular momentum is µ0

4π
gq.

7. [4pt] Argue that quantum mechanically we should have

qg = Nh/µ0 (15)

where N = 1, 2, . . . . Here h is Plank’s constant (not the reduced one).

This is Dirac’s quantization condition for the monopole. It is usually derived quan-
tum mechanically by imposing proper transformations under gauge transformations
of electron wave functions in the presence of a monopole. Here we argued for it
semi-classically.
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4 Neutron Star

Consider a noninteracting gas of indistinguishable quantum particles of mass M at tem-
perature T contained in a large volume V . The average occupation number n(k) of a
single-particle state of energy E(k) can be written as

n(k) =
g

e[E(k)−µ]/kBT ± 1
, (16)

where g is the degeneracy of the single-particle energy level, kB the Boltzmann constant,
and µ the chemical potential. The ± signs in the denominator in Eq. (16) distinguish
Fermi and Bose gases.

1. [2.5pt] Show that for a Bose gas with single-particle energies E(k) = ~2k2/2M
the chemical potential µ is necessarily negative.

2. [2.5pt] Given that µ gives the change in the internal energy of the gas when one
more particle is added while holding the volume and the entropy constant, what is
the physical meaning of a negative µ?

Hint: Recall the thermodynamic identity dU = T dS − p dV + µ dN (valid for
infinitesimal, reversible processes).

3. [2.5pt] Bose-Einstein condensation is the phenomenon that at sufficiently low tem-
peratures, all bosons occupy the lowest energy state; the bosons form a “conden-
sate”. When all bosons condense in the zero-energy state, the condensate has
µ = 0. Use entropic arguments to explain why µ = 0 in such a situation.

4. [2.5pt] Consider nonrelativistic neutrons with single-particle energies given by
E(k) = ~2k2/2M , where M is the neutron mass. Show that the chemical potential
of the neutron star is equal to the Fermi energy, µ = EF where EF = ~2k2F/2M
and kF = (3π2ρ)1/3, with ~kF being the Fermi momentum.

5. [7.5pt] Suppose the single-neutron energies are given by the relativistic expression
E(k) =

√
~2k2c2 +M2c4. Show that the neutron star pressure of the gas reads:

P =
k3F
3π2

(~kF c)2
∫ 1

0

dx
x4

(~2c2k2Fx2 +M2c4)1/2
=



2

5
ρEF ,

nonrelativistic

neutrons
,

M4c5

12π2~3

(
~kF
Mc

)4

,
ultrarelativistic

neutrons
.

(17)
Hint: recall that the pressure is P = −∂E/∂V , where E is the total energy.

One can find an analytical expression for the equivalent of the Chandrasekhar limit for
such a hypothetical neutron star in Newtonian gravitation. This is the maximum mass
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for a pure neutron star described by the nointeracting Fermi gas. Above this limit, the
gravitational pressure would overcome the Fermi gas pressure and the star would collapse.
For ultrarelativistic neutrons, this maximum mass can be written only in terms of the
fundamental constants ~, c and G, and the neutron mass M .

6. [7.5pt] First, use Newton’s law of gravitation for the differential of the force per
unit area dF/A = dP to show that for a spherical homogeneous star with constant
mass density n∗ = M∗/V we have

dP (r)

dr
= −GM∗(r)

r2
n∗ (18)

whereM∗(r) is the mass contained in a spherical volume of radius r. Next, integrate
this equation to show that the maximum mass of the star for ultrarelativistic
neutrons is given by

Mult.rel.
∗ =

3

8

[
2π

M4

(
~c
G

)3
]1/2

. (19)
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