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. Derive the parsec (pc) as the distance whose annual parallax is 17.
. Derive that 3 light years ~ 1 pc.

. Derive the “Age of the Universe” from the Hubble constant H, whose
approximate value is 70km/sec/Mpc, meaning that the average galaxy
recession velocity is 70km/sec per each Mpc of distance.

. Using Gy = % convert Hy? into an estimated cosmological density.

. Compare the above result with the average density of the Universe
considering that it hosts a 10'2M, galaxy every Mpc3.

. Under the blunt approximation of constant matter density inside a
galaxy (1), estimate its typical rotational velocity w at a distance of
~ 10kpc from its center. How does it change with the distance from
the galactic center?

. Use the Planck constant value i ~ 200 MeVx fm (and leV ~ 1.8 x
10733gr) to derive

A 1/2
Mp, = (G—> ~ 107 %gr ~ 10GeV ,
N

2
and that Mg ~ (%) Mp; ~ 10%3gr. The reason of this last equality

(two largely different microscopic quantities conjuring to a macroscopic
one) reside on the equilibrium configuration of a star sustained by
zero-degeneracy pressure, a subject adressed by Tolman-Oppenheimer-
Volkoff equation in General Relativity.
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. Verify that the homogeneous Maxwell’s equations

= —

V.-B=

0,
vxE+% 0

are identically satisfied if one assumes E' = FY B’ = 1% [, with
F,, =0,A, — 0,A, (metric convention -+-++).

Verify that the in-homogeneous Maxwell’s equations

V.-E=A4r ™,
VxB=2%yr],
are equivalent to
O, F"™" = An JH.

Show that the decomposition A; = A; + d;a admits a unique solution
for @ and A; in terms of the original A; (assuming all go to 0 at infin-
ity) under the condition 9;A* = 0. How many degrees of freedom are
encoded in each of A;, A;, and a? What are their dimensions?

Derive the e.o.m. for A*: OA = 4n.J?, where J* = J' + 0'j. Interpret
this equation as a wave equation.

Show that the remaining two non-homogeneous Maxwell’s equations
are equivlent iff p + V25 = 0, and that they both lead to

V? (A" +a) = 4mp.

Show that this implies that the field A + @ does not propagate, but it
is a d.o.f. dependent on the source p.

Verify that P;(n) = d;; — fyny is a projector, i.e. P2 = P. Veirfy that
it projects onto the space orthogonal to n.

Verify that the retarded and advanced Green’s functions can be written
as

6(t — |x —x|) / dw Pk — e witikx
Gr(t—t',x—x")=— = [ — .
R( , X X) 47T’X—X/| o1 (271’)3 (W+i€)2 —k2

When integrating [;~ e™" it is crucial to replace w — w + i€ to make
the integral insensitive to r — oo features of the source. Analogously

for advanced boundary condition one has to substitute w — w — ie.
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Locate the position of the poles of the retarded and advanced Green’s
function in the complex w plane.

In particle physics one adopts a different boundary coundition, giving
rise to the Feynman Green’s function

. 1
GF_w?—k2+z‘e’

whose poles in the complex k plane are for k2 = w? +ie, i.e. k = w+ie
and k = —w — e for w >0 and k = —w + 1€ and k = w — i€ for w < 0,
i.e. in a unique form: k = £ (|w| + ¢).

Perform the space k integral first in

dw d?’k‘ e—z’wt+ik:p
t = | =
GF( ;:L‘) /27(/(27‘(’)30\)2—]{:2—{—7;67

GF ~ %/dwe—iwt—&—ﬂwh’

to obtain

which shows that for w > 0 (< 0) one has out-(in-)going waves.

Verify that

1 . .
= Pij(n)Pu(n),

Nijga(R) = Pa() Pa(R) — 3

is a projector acting a symmetric rank 2 tensor h;;, given that

~

Pij = 51']' — NN

is the transverse projector acting on vectors. Show that the outcome
of the projection
PIT = ARl

is a trace-less tensor with no components along n.

Show that for a wave propagating along Z the radiative metric pertur-
bation can be written as

h+ h/>< 0
hi = | hx —hy 0|,
0 0 0

hence it indeed has 2 radiative degrees of freedom.
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Given the GW equation

] hTT

derive the solution

BET (1, i) = AG Ay () /

16’/TGAU lekl

Tt — |x—a| 2
| — |

)d3x/ .

Show that for small sources with small internal velocities one can ap-
proximate the previous solution as

) 4G . )
it (t, ) = A g () — . / &’z ’[Tkl(t—r 2 = Tt —r, 2@ 7

What is the expansion parameter?

Given the energy-momentum tensor of GWs

1
(GW) _ o h TTa hTT
uv 327_(_G < 1 1] >
derive the energy density in GWs
pew = < (i + 12
167TGN + x)

and the radial outgoing flux 7% = p.

Using the GW e.o.m. OR/[" =

formula

+ ...

(1)

= —167GnAij i Ti;, derive the luminosity

dE G ... ... )
- S_WQiijl/Aij,kl(n)dQ-
Use o g
L [anddQ = 2,
ﬁ fﬁiﬁjﬁkﬁldQ = %5 ((5”5“ + 5ik5jl + 5zl53k) ,

to derive the quadrupole formula

dE G
dat

Specialize the quadrupole to a binary system in circular orbit

Xz

)
z

rcos(wt)
rsin(wt) ,
=0,
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to derive
Que = 4AnMuw?r?sin (2wt)

Q,y = —4nMw’r?cos (2wt)
Q, = —4nMw’r?sin (2wt) ,
from which 390 2
2772, 6 4 2,10
Tk

where in the last passage the Kepler’s law has been used (hence while
the quadrupole formula holds for generic system, the expression above
involving v'° holds only for self-gravitating ones.)

Compute the amplitude of gravitational wave emitted by a quadrupo-
lar, planar source for generic propagation direction via

hi' () = Agjw(R) Quy —Qux 0 |,

o [ G O 0
" 0 0 0

by using the simplified setup of 7 = 2 = (0,0, 1) and tilting the source

by —u:

o [ oSt 0 —sine Qm sz 0 cost 0 sine

hg‘T(éa [’) = Aij,kl(’?’)T 010 me _Q:m: 0 010
sint 0 cost 0 0 0 —sint 0 cost
e Q;” (1 + cos?) QzyCcOSL 0

= — Quycost —2= (14 cos?t) 0

0

Derive the “Newtonian” evolution of the binary circular velocity:

dv 3277dt:>At_5 1 1
v?  5GNM GM 2560 \ vf o} )"

Derive the evolution of the GW frequency using that v = (1GM faw )"*:

. 96
foew = FWS/SH(GM)s/s élv(/g

96
- T

0

0



27. It is convenient to express the Fourier Transform of the waveform via
the analytic formula (¢ = 0)

: GM o |
W) =0 [ di? () (90 4 70

using the Stationary Phase Approzimation leading to

h(f) ~ U2 (to(f))62mft*(f) /e—uﬁ*—zd)(t—t*)zdt
r
5/3 1/2
73 (GM.) / 213 (2_7T> / (i fto—g.—m/4)
r f

1/2 5/6 p—
e ( 5 )/ (GM)™ F77/° ompt—g)-n/
r

12

28. Derive the numerical relation

5GNM (M fiaw \ 3
At ~ ~ 1.4 x10* —
2561, X 107see () (MQ) (10Hz ’

using v = (7GM few )"

29. Given the detector output n(t) (assuming it is all noise), consider its
discrete Fourier Transform

Afi) = AfY e Hin(t;)
J

where f, = kEAf, Af = 1/T, being T = NAt the total acquisition
time, N the total number of points sampled and At the sampling time.
Show that while the amplitude of n(f) depends on N, the spectral
noise density .5,, defined by

(R(R)) = Spd(f + f1),
or its discrete analog
AU () = Sdpgs

is independent on N, hence it represents a good figure of merit of the
detector’s noise. What is S,, dimension?



30. To assess the strength of a signal, it is necessary to compare it to the
detector’s noise. Let us then consider filtering the signal by correlating
to a filter K (¢) and comparing this to the noise:

S _ [dts(t)K(t)
VNZ ([ dtdt K (4) K () (n(t)n())]
_ Jds(OE())
VIS E (P

To find the best possible filter K define the scalar product

172"

(i) = [t

hence
S (8l
VN? (ala)t?

with & = S,K. The solution can only be K = 5/S, (why?) hence

giving )
- 1/2
h 2
2/df| g” ] .

SNR =




