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Scores:

• Problem 1 (Born-Infeld Electromagnetism): 25%

• Problem 2 (Restricted Three-Body Problem): 25%

• Problem 3 (Biological Population Dynamics): 25%

• Problem 4 (An Inverse Problem in Quantum Mechanics): 25%

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the
harder parts on as many exercises as possible. This is a difficult exam, so do not be
discouraged if you get stuck on an exercise.
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1 Born-Infeld Electromagnetism

In Maxwell’s theory for electromagnetism, a point charge generates an electric field which
carries infinite energy. So the self-energy of a point charge in this theory is infinite. In
1934, Born and Infeld developed a modified theory of electromagnetism in which a point
charge generates an electric field which carries finite energy. The first part of this question
includes warm-up exercises about Maxwell theory, and the second part of the question
concerns properties of the Born-Infeld theory of electromagnetism.

We will use conventions where the speed of light c = 1 and space-time signature
corresponding to ηmn = diag(+1,−1,−1,−1). Recall that

~E = −~∇φ− d ~A

dt
, ~B = ~∇× ~A,

can be encoded in relativistic notation simply as Fmn = d
dxm

An− d
dxn

Am where m = 0...3

and Am = (φ, ~A). More precisely, we have F0j = Ej and Fjk = −εjklBl where here the
indices run over space values only j = 1...3. Two relativistic formulas which can easily
be verified are

FmnF
mn = −2( ~E · ~E − ~B · ~B) , εmnpqF

mnF pq = −8 ~E · ~B
Finally, when discussing matter sources we will also pack them into a four vector in the
standard way as jm = (ρ,~j).

Electromagnetism Warm-Up

1. [2 pts] Show that the relativistic equation

ηmn
d

dxm
Fnp = jp (1)

is implied by Maxwell’s equations when expressed in terms of ~E and ~B in the
presence of sources ρ and ~j.

2. [1 pts] Show that Maxwell’s equations imply that the electric field produced by a
static point charge Q localized at the origin x = y = z = 0 is

~E =
Q

4π

~R

|R|3

where ~R = (x, y, z) and |R| =
√
x2 + y2 + z2.

3. [1 pts] Show that the total energy of this electric field, E = 1
2

∫
d3x ~E · ~E, is infinite.

4. [2 pts] Show that equation (1) follows from extremizing the action

S =

∫
d4x[

1

4
FmnF

mn + Amj
m]

with respect to variation of the gauge field Am.
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Born-Infield

5. [2 pts] For a general action of the form

S =

∫
d4x[f( ~E, ~B) + Amjm]

where f is an arbitrary function of the electric and magnetic fields, show that
extremizing the action with respect to Am implies the equations of motion

− d

dt
~D + ~∇× ~H = ~j, ~∇ · ~D = ρ

where ~D ≡ − ∂f

∂ ~E
and ~H ≡ ∂f

∂ ~B
.

6. [2 pts] In the action proposed by Born and Infeld,

f( ~E, ~B) = b2
√

1 +
1

2b2
FmnFmn − (

1

8b2
εmnpqFmnFpq)2 − b2

where b is a constant. Show that Born-Infeld theory is equivalent to Maxwell theory
in the limit that b→∞.

7. [2 pts] Write the equations of motion in terms of ~E and ~B that come from extrem-
izing the Born-Infeld action with respect to Am. The formulas in the introduction
may be useful.

8. [5 pts] Find the electric field in Born-Infeld theory produced by a static point

charge Q localized at the origin. Hint: First find the expressions for ~D and ~H.

9. [2 pts] Show that the electric field has a maximum value of |E| = b. Sketch the
magnitude |E| as a function of the distance R for b = 1 and compare it with the
usual EM case corresponding to b→∞.

10. [3 pts] Show that the total energy E of the electric field in Born-Infeld theory is
finite where the total energy of the electric field is defined by

E =

∫
d3x( ~D · ~E + f( ~E, ~B)).

11. [3 pts] Show that the Born-Infeld action can be concisely expressed as

f( ~E, ~B) = b2
√
− det(ηmn +

1

b
Fmn) − b2

In your argument, you can use the fact that at any point, one can always choose a
Lorentz frame such that the only nonzero components of Fmn are F10 = −F01 = |E|
and F23 = −F32 = |B|, i.e. ~E and ~B are both pointing in the x direction.
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2 Restricted Three-body Problem
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Figure 1: A probe object orbits around two much heavier objects. In this exercise we
will look for equilibrium points of this probe particle which can be nice locations to put
satellites, when they are stable.

Consider two heavy masses M > m in circular orbit around each other with angular
frequency Ω at a constant distance of R away from each other. The restricted three-
body problem is to determine the motion of a light object of negligible mass µ in the
gravitational field of the two heavy masses. We set µ = 1 for convenience and assume
M,m � 1. We also assume all motion to take place in the same plane. Prototypical
examples could be the Moon moving in the gravitational field of the Sun and the Earth
or a small satellite moving close to the Earth and the Moon.

Effective Lagrangian and Effective Potential

1. [3 pts] In a polar coordinate system with the center of mass of the heavy masses as
the origin, the position of M is (νR, π+Ωt) and the position of m is ((1−ν)R,Ωt)
where ν = m

M+m
. If the trajectory of the light object in these coordinates is

(r(t), θ(t)) show that the Lagrangian for the light object is:

L =
1

2
ṙ2 +

1

2
r2θ̇2 +G(M +m)

[
1− ν
ρ1(t)

+
ν

ρ2(t)

]
(2)

where

ρ1(t) =
√
r2 + ν2R2 + 2νRr cos[θ − Ωt] (3)
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and

ρ2(t) =
√
r2 + (1− ν)2R2 − 2(1− ν)Rr cos[θ − Ωt] (4)

2. [1 pts] Is the energy of the light object conserved in the coordinate system used
in (2)?

3. [1 pts] We can go to a rotating frame by making the change of variables χ = θ−Ωt.
Compute the Lagrangian in the rotating frame.

4. [2 pts] Show that in the rotating frame the Hamiltonian is

H =
1

2
ṙ2 +

1

2
r2χ̇2 − V (r, χ) (5)

where

V (r, χ) = −G(M +m)

[
r2

2R3
+

1− ν
r1

+
ν

r2

]
(6)

Here r1 is the distance between the light object and M :

r1 =
√
r2 + ν2R2 + 2νRr cosχ (7)

and r2 is the distance between the light object and m:

r2 =
√
r2 + (1− ν)2R2 − 2(1− ν)Rr cosχ (8)

5. [2 pts] What is the physical interpretation of each of the terms in equation (6)?

6. [2 pts] Show that up to a constant the effective potential V (r, χ) can be written
in terms of the distances r1 and r2:

V (r1, r2) = −G
[
M

(
r21

2R3
+

1

r1

)
+m

(
r22

2R3
+

1

r2

)]
(9)

Equilibrium Points

We will now look for special equilibrium positions r∗, χ∗ with 0 = ∂V
∂r

(r∗, χ∗) = ∂V
∂χ

(r∗, χ∗)

7. [3 pts] Show that the equilibrium conditions can be cast as a matrix problem

0 = M · ~f where ~f =

(
f1
f2

)
and f1 = 1/R3 − 1/r31 , f2 = 1/R3 − 1/r32

(10)
Show that two of the entries of the matrix M are M11 = rM + νRM cos(χ) and
M21 = −νRrM sin(χ). What are the other two?
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Figure 2: Equilibrium Points.

8. [2 pts] One way to satisfy the matrix problem (10) is for the vector to vanish. This
yields two of the five critical points Lj depicted in figure 2. Which ones? What
are the corresponding values of r∗, χ∗? These points were first found by Lagrange.

9. [1 pts] Another possibility is for the determinant of M to vanish. Show that this
does happen when sin(χ)=0.

10. [1 pts] Consider the first the case where χ = 0 and let us look for solutions with
r∗ bigger than (1 − ν)R. The relations between r1, r2 and r are now all trivial,
without any square roots. Write these relations down.

11. [3 pts] Show that in this case the equilibrium condition simply reduces to h(ρ) = 0
with ρ = r2/R and

h(ρ) ≡ (1− ν) + ρ− 1− ν
(1 + ρ)2

− ν

ρ2
(11)

Note that ρ > 0 by definition and each term in the right hand side has a well
defined sign. Sketch the function h(ρ) and explain why there is indeed one (and
only one) critical point with χ = 0 and r∗ bigger than (1 − ν)R. Which point is
this in figure 2?

12. [4 pts] Establish the existence of the remaining two critical points in figure 2.

Several planets have satellites near their L4 and L5 points (which are stable equilibrium
points when ν < 1

2
(1−

√
1− 4/27)) with respect to the Sun, with Jupiter in particular

having more than a million of these. Artificial satellites have been placed at L1 and L2

with respect to the Sun and Earth, and Earth and the Moon, for various purposes, and
the various Lagrangian points have been proposed for a variety of future uses in space
exploration. [Source: Wikipedia]
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3 Biological Population Dynamics

Population dynamics describes how the number of individuals of a given species N(t)
changes in time t due to biological processes.1

Exponential and logistic growth

The simplest law for the growth of a population is Malthus law, which states simply that
the per capita growth rate of the population is constant:

dN

dt
= rN , (12)

where r > 0 is the intrinsic growth rate. An obvious problem with this law is that it
predicts indefinite exponential growth of a population. A simple improvement which
depletes the growth rate at high population numbers is given by the logistic equation

dN

dt
= rN(1−N/K) , (13)

where K > 0.

1. [2 pts] Find the solution N(t) to the logistic equation with initial population
N(0) = N0.

2. [2 pts] Calculate the value of N(t) when t→∞. Does it depend on N0?

Spatial dynamics

The simple example above does not take into account how a population spreads in
space, as it implicitly only describes the total population in a certain region. If we want
to describe the population dynamics in space and time, we must describe the population
by a density, which is a function of space and time. For sake of simplicity, we will take
space to be one-dimensional, and the density will be just a function ρ(x, t) so that

N(t) =

∫
dx ρ(t, x) . (14)

The simplest assumption about how a population redistributes itself is that the movement
of individuals is akin to a Brownian motion. This leads to the following equation:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ(1− ρ/K) (15)

where D > 0 is the diffusion constant and r and K are both positive constants. We
further assume that the population is contained in a domain x ∈ [0, L] and we will
impose Dirichlet boundary conditions

ρ(0, t) = ρ(L, t) = 0
1When the number of individuals is sufficiently large, we may describe it by a positive real number

varying with time.
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3. [2 pts] Show that – by conveniently rescaling time, space and the density ρ – the
problem above with parameters K, r, L,D is equivalent to

σ(0, T ) = σ(1, T ) = 0 ,
∂σ

∂T
= A

∂2σ

∂X2
+σ(1−σ) , N(t)/K =

1∫
0

dX σ(X,T )

(16)
What is A in terms of the original parameters?

4. [3 pts] If σ << 1, we can neglect the quadratic term in the above equation.
The resulting linear equation can be solved by separation of variables. Find a
solution that obeys the boundary conditions and is everywhere positive, except at
the boundary of the domain.

5. [4 pts] The solution found above can increase or decrease depending on the domain
size. Find a critical value Lc, such that if L < Lc the solution goes to zero for large
times.

Predator-prey dynamics

The previous cases refer to single-species populations, that is, a population that does not
depend of the presence of other populations. It is more realistic to consider the dynamics
of interdependent species, said to be interactive species. The first model to consider this
situation was the �Lotka-Volterra model of two species, one being the predator P (t) and
the other the prey N(t). In the absence of the predator the prey grows exponentially.
When no prey is present the predator dies out. The model is given by the equations:

dN

dt
= N(a− bP ) ,

dP

dt
= P (cN − d) , (17)

where all constants are positive.

6. [2 pts] Give a simple intuitive explanation about why all constants a, b, c, d are
indeed expected to the positive.

7. [2 pts] Show that by a simple rescaling this problem is equivalent to

du

dτ
= u(1− v) ,

dv

dτ
= αv(u− 1) , (18)

with a single dimensionless parameter α.

8. [4 pts] Find a conservation law for the system of equations (18). That is, find a
function

F (u, v) = u− log(u) + . . .

of u and v such that this function is constant in time τ when u and v satisfy
equations (18).

9. [4 pts] Argue that the Lotka-Volterra dynamics yields a periodic behaviour for the
populations of preys and predators.
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4 The Inverse Problem in Quantum Mechanics

x

V (x)

Consider the one dimensional Schrodinger equation
−ψ′′(x) + V (x)ψ(x) = E ψ(x) for some smooth potential
V (x) vanishing at infinity. We can scatter waves from mi-
nus to plus infinity and we might support bound-states if
the potential is deep enough. Usually we are given a poten-
tial from which we compute the scattering data consisting
the reflection and transmission coefficients as well as the
bound-state data.

In this problem we consider the inverse problem: Given the scattering data, can we
fully reconstruct the potential V (x)? We encode the scattering data in the function F (x)

F (x) ≡
∫

dk

2π
R(k) exp(ikx) +

N∑
n=1

rn exp(−κnx) , rn ≡ i
T 2(iκn)

T ′(iκn)
bn (19)

where N is the number of bound-states that the potential supports and all other quanti-
ties are read off from the asymptotic of the scattering states ψk(x) (which have continuous
positive energy E = k2) and of the bound-states ψn(x) (which have discrete negative
energy E = −κ2n with n = 1, . . . , N) as

ψk(x) '


T (k) e−ikx , x→ −∞

R(k) e+ikx + e−ikx , x→ +∞
, ψn(x) '


e+κnx , x→ −∞

bn e
−κnx , x→ +∞

.

Given a scattering data F (x) we can reconstruct2 the potential V (x) as

V (x) = −2
d

dx
K(x, x) (20)

where the kernel K is the solution to the Gelfand-Levitan-Marchenko integral equation

K(x, y) + F (x+ y) +

∞∫
x

dz K(x, z)F (z + y) = 0 . (21)

In this problem we explore this very non-trivial equation.

We consider first the case of a reflectionless potential with a single bound-
state so that F (x) = Ae−Bx.

1. [2 pts] Show that K(x, y) = f(x)g(y) where the y dependence is a simple expo-
nential.

2. [3 pts] Find f(x) and V (x).

2up to simple shifts of x which would not affect the scattering data
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3. [2 pts] Show that by a simple shift of x we can simplify that potential into
−B2/ cosh2(Bx).

We see that the potential V (x) = −B2/ cosh2(Bx) is very special: It is reflectionless so
that R(k) = 0 for any k ∈ R and it supports a single bound-state with E = −B2.

We will now verify this explicitly. To do so we note that the differential equation
−ψ′′(x)−B2/ cosh2(Bx)ψ(x) = E ψ(x) can actually be solved analytically yielding

ψ(x) = c1 e
−i
√
Ex
(
B tanh(Bx) + i

√
E
)

+ c2 e
i
√
Ex
(
B tanh(Bx)− i

√
E
)

where c1 and c2 are two integration constants.

4. [3 pts] Consider first bound-states so that the energy is negative and i
√
E = −κ.

Note that we can take both κ and B to be positive without loss of generality. What
should c1, c2 and – most importantly – κ be for a normalizable wave function?

5. [3 pts] Next we consider scattering states where the energy is positive and i
√
E =

ik. By imposing the large x assymptotics of the wave function fix the integration
constants in this case as well and show that indeed R(k) = 0.

6. [2 pts] What is the transmission coefficient T (k) for this simple potential? Where
are its poles in the complex k plane?

Finally take a reflectionless potential with N bound-states: F (x) =
∑

nAne
−κnx.

Inspired by the previous section we make an ansatz K(x, y) =
∑

n fn(x)e−κny

7. [5 pts] Show that in this case the problem then reduces to a simple linear algebra
matrix problem of the form

M ·

 f1(x)
...

fN(x)

 =

 −A1e
−κ1x

...
−ANe−κNx

 (22)

where M is a simple N ×N matrix. (By inverting this simple problem we can then
find fn and thus K(x, y) and the potential.)

Small potential

Suppose we have a very small potential disturbance such that there are no bound-states
and very small reflection coefficient

R(k) = α f(k) (23)

where α can be taken to be very small.

8. [5 pts] How would you compute the potential V (x) as a series expansion in α from
(21)? Write down the first two terms of the expansion of V (x) in terms of simple
integrals of f(k).
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