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1 Percolation

Consider a lattice where each node can be occupied with probability p or empty with
probability 1−p. A cluster is a set of connected occupied nodes. In the example in figure
3a we have a two dimensional square lattice with 3 clusters; in figure 3b we have the so
called Bethe lattice and two clusters; in figure 3c we have a one dimensional lattice with
two clusters.

(a) (b)

(c)

Figure 1: 2D Square lattice, Bethe lattice and 1D lattice with 3, 2 and 2 clusters respectively. The
Bethe lattice a connected cycle-free graph where each node is connected to z neighbours, where z is
called the coordination number (in the figure z = 3). It is a rooted tree, with all other nodes arranged
in shells around the root node, also called the origin of the lattice.

As the lattice size goes to infinity we can also have the so called infinity cluster, a
cluster which occupies a finite fraction of the lattice sites. We define the percolation
threshold pc as the probability p at which an infinite cluster appears for the first time in
an infinite lattice. The order parameter in percolation is then the probability P that a
site chosen at random will belong to the infinite cluster. A generic expected behavior of
P as a function of the occupation probability p is given in figure 2. There is a critical
percolation probability pc below which P = 0; as p → 1 the order parameter goes to 1
since all sites are occupied. For p→ p+c slightly above the critical value we expect

P ∼ (p− pc)β (1)

where β is a critical exponent.

Square Lattice

Consider here an infinite square lattice. We use ns(p) to denote the number of clusters
of size s per lattice site.
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Figure 2: Probability P of a random site becoming to an infinite cluster as function of the single site
occupation probability p.

1. [3pt] Show that the probability n1(p) of finding a single isolated occupied site (i.e.
a cluster of size 1) in a square lattice is

n1(p) = p(1− p)4 (2)

2. [3pt] What is the probability n2(p) of finding a cluster of two sites in this lattice?

Hint: If p = 1/2 you should get n2(1/2) = 1/26.

Percolation in 1D

In 1D, the lattice is a simple infinite line and everything can be solved analytically.

3. [3pt] Show that
ns(p) = (1− p)ApB (3)

and find A and B.

4. [3pt] Show that P = 0 for any p < 1. Explain why this is the expected result.

Percolation in a Bethe Lattice

Next we consider a Bethe lattice with coordination number z = 3 (i.e. each site has
three neighboors) as in the example in figure 3b. We use g to indicate he number of
generations of the lattice, that is the distance of the most outer noted to the centre node.
In figure 3b we have g = 4 for example; in that figure we have a total number of 46 sites
out of which 24 are in the outermost layer and are thus called surface sites.
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5. [3pt] Show that, for a general Bethe lattice of coordination z,

Number of Surface sites

Total Number of Sites
→ z − 2

z − 1
(4)

as g →∞. What is interesting here is that the number of surface sites approaches
a finite fraction of the total number of sites as the lattice size is sent to infinity.

6. [5pt] Assume an infinite lattice henceforth. Define Q as the probability that an
arbitrary site is not connected to infinity through a fixed branch originating at this
site. Argue that Q obeys the nice relation

Q = (1− p) + pQz−1 (5)

and use it to find Q in the example in the figure where z = 3.

Hint: The solution has two branches depending on wheather p < pc or p > pc
where pc takes a simple value which you should compute.

7. [5pt] Argue that
P = p (1−Qz) . (6)

What is P for the z = 3 case and what is the critical exponent β defined in (1)?
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2 Quantum Pigeonholes (with Rabbits)

1

2

3 L R

Figure 3: 3 distinguishable rabbits (or particles) are put in two boxes. Quantum mechanically, we can
get very counterintuitive results for the probabilities of encountering various combinations of particles
in various combinations of these boxes.

The Classical Problem

Consider three distinguishable rabbits labeled by 1, 2, 3 which can be put into two boxes
labeled L and R. Someone hides the rabbits in these boxes in a random way. Let Pij
denote the probability of having rabbits i and j both in the same box (so that 1−Pij is
the probability of having rabbits i and j in different boxes).

1. [1pt] If P12 = P23 = 0, what is P13?

2. [1pt] If P12 = P23 = 1, what is P13?

3. [1pt] If P12 = 0 and P23 = 1, what is P13?

The Quantum Problem

Here we consider now three distinguishable quantum particles labelled by 1, 2, 3 which
can again be put into two boxed L and R. Particle 2 in the R box would be represented
by the ket |R〉2 for example.

4. [2pt] What is the projection operator Π12 into the subspace where particles 1 and
2 occupy the same box?

5. [3pt] We initially prepare the system in the state

|Ψ〉 = |+〉1|+〉2|+〉3 , |+〉a ≡
|L〉a + |R〉a√

2
, (7)

What is the probability that particles 1 and 2 occupy the same box? What about
2 and 3? What about 1 and 3? What classical random process would generate
these same probabilities?
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6. [2pt] Next we consider a measurement to find out if each of the particle is in
the state |+i〉 = 1√

2
(|L〉 + i|R〉) or the state |−i〉 = 1√

2
(|L〉 − i|R〉). What is the

probability of finding the possibility

|Φ〉 = |+i〉1 |+i〉2 |+i〉3 (8)

if we start with the state (7)?

7. [2pt] In a different setup, we want to do something else before measuring the
state in the basis |±i〉1 |±i〉2 |±i〉3. We would like to perform an intermediate
measurement to determine if particle 1 and particle 2 are in the same box or not.
Note that we do not wish to know in which exact box they are, just the relative
location. What state does the state (7) collapse into, at this intermediate step, if
the particles are indeed found to be in the same box?

8. [2pt] Assuming we collapse into that state, what is the probability of measuring
the state |Φ〉 in the final state?

9. [2pt] What would happen if you were to repeat this exercise for other pairs of
particles?

10. [3pt] How does this compare with the classical intuition of the first problem of the
first part?

11. [6pt] Repeat points 6 to 9 with |Φ〉 replaced by |Φ′〉 = |+i〉1 |−i〉2 |+i〉3. How do
your findings compare with the classical intuition of the second problem of the first
part?
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3 Decay of a Relativistic Particle

A particle A of mass M has a half-life (at rest) of 10 seconds to decay into two stable
particles B and C which both have mass M

4
.

Suppose particle A is moving at v = 3
5
c.

1. [2pt] What is its half-life?

When particle A decays into B and C, suppose that particle B emerges at an angle
perpendicular to the direction of particle A.

2. [3pt] What is the magnitude of the velocity of particles B and C in the center-of-
mass reference frame?

3. [6pt] What is the magnitude of the velocity of particles B and C in the original
reference frame?

Suppose that particles B and C both have mass M̃ (instead of M
4

).

4. [4pt] What is the maximum value of M̃ such that particle B can emerge at an
angle perpendicular to the direction of particle A?

5. [10pt] If M̃ is larger than this maximum value, what is the range of possible

angles (as a function of M̃) for particle B to emerge with respect to the direction
of particle A?
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4 Synchroton radiation: a simplified approach

Accelerated charged particles emit radiation. When this acceleration is perpendicular
to the velocity of the particle the emission is called synchroton radiation. This type of
radiation has many applications in the study of materials and Brazil is now finishing
the construction of one of the most advanced synchroton source in the world, called
Sirius (after the brightest star in the sky). The properties of synchroton radiation can
be derived using retarded potential in Maxwell’s equations (as in Jackson chapter 14)
but in this problem we will study it using a simpler method originally developed by J. J.
Thomson. This method is not rigorous but I hope it will help to develop some intuition.
In fact it is valid for any type of radiation produced by accelerated charges. This problem
might look a bit long but there is a lot of text trying to make it easier.

Throughout we use MKS units where the electric field of a static particle with charge
q is given by:

~E(~r) =
q

4πε0

1

r2
r̂ (9)

Consider an electric charge at rest at time t = 0. The charge is then accelerated by
changing its velocity by ∆v in a short time interval ∆t. The electric field configuration
at a finite time t will look like figure 4, where we are neglecting the motion with constant
speed. The field outside the sphere with radius r = ct has to be the same as before the
since there was no time for the information about the motion of the charge to reach this
region.

The variation of the electric field in the time interval ∆t represented in the thin shell
in the figure will produce the synchroton radiation.

t=0 
t 

Figure 4: Electric field of the charge before and after the acceleration period of ∆t.
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Figure 5: Detailed version of the change in one particular field line. The particle moves
to the right, along the x axis. (In the figure dt = ∆t and same for the velocity.)

Polar electric field

1. [4pt] Consider the more detailed figure 5. Show that the electric field in the θ
direction can be written as

Eθ =
q

4πε0

1

rc2
v̇ sin θ (10)

where v̇ = ∆v/∆t.

Notice that this polar field decreases slower than the radial field and hence is dominant
at large distances. This is the field responsible for the radiation.

Flux of energy: the Poynting vector

The emission of radiation takes out energy from the system. This is quantified by the
Poynting vector ~S, which is derived from conservation of energy and is given by:

~S =
1

µ0

~E × ~B (11)

The electric and magnetic fields of a monochromatic electromagnetic plane wave
propagating in the ẑ direction can be written as:

~E = E0e
i(kz−ωt)x̂ (12)

~B = B0e
i(kz−ωt)ŷ (13)
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with c = ω/k = 1/
√
ε0µ0.

2. [3pt] Show that Maxwell’s equation in vacuum imply that

| ~B| = 1

c
| ~E| (14)

3. [2pt] Show that the Poynting vector is given by

|~S| = cε0| ~E|2 (15)

Power radiated

The power radiated is given by

P =

∫
~S · d ~A (16)

4. [3pt] Show that for the case of Eθ the power emitted is

P =
1

6π

q2v̇2

c3ε0
(17)

This is known as the Larmor’s formula for the energy loss of an accelerated charge.

5. [2pt] Show that it can also be written as

P =
1

6π

q2

c3ε0m2

d~p

dt
· d~p
dt

(18)

where ~p is the momentum and m is the mass of the charged particle.

Relativistic formula

Now we are ready to guess the relativistic formula for synchroton power emission. We
can write a covariant form of Larmor’s formula using the 4-momentum pµ = (E/c, ~p)
and the proper time τ . A covariant formula for the emitted power is:

Prel =
1

6π

q2

c3ε0m2

∣∣∣∣dpµdτ dpµdτ
∣∣∣∣ (19)

6. [2pt] Show that this equation can be written as

Prel =
1

6π

q2

c3ε0m2
γ2
∣∣∣∣d~pdt · d~pdt − v2

c2
(
dp

dt
)2
∣∣∣∣ (20)

where p ≡
√
~p · ~p and γ = E/(mc2).
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Synchrotron radiation: circular accelerators

Although synchroton radiation is very useful in some cases it is undesirable. This happens
when one tries to accelerate particles to the highest possible energies, as in the Large
Hadron Collider at CERN in order to study how elementary particles interact. We are
now going to put some numbers in our calculations in order to estimate the effect of
synchroton radiation in circular accelerators (sorry, I’m a phenomenologist).

7. [2pt] Consider a charged particle with fixed energy E confined in a circular orbit
of radius R with a magnetic field. In this case the magnitude of the velocity is
constant but not its direction. Show that in this case

Prel =
1

6π

q2

c3ε0
γ4a2 (21)

where a = v2/R is the centripetal acceleration.

8. [2pt] Finally, consider relativistic particles and use γ = E/(mc2) and use the
definition of the fine structure constant

α =
e2

4πε0c~
' 1/137 (22)

to get

Prel =
2α

3

E4

(mc2)4
~c2

R2
(23)

9. [3pt] Now we have to get our units straight. One of my favorites numerics (very
handy in particle physics for conversion of units) is:

~c ≈ 200 MeV x fermi (24)

where 1 fermi = 10−15m. For an electron with mass mc2 = 0.5 MeV and a reference
energy of E = 1GeV and reference radius R = 1 km show that

Prel ≈ 5
(E/1 GeV)4

(R/1 km)2
MeV/s (25)

10. [1pt] Is this a problem for accelerators? The Large Electron Positron Collider
(LEP), that worked in the same tunnel as the LHC in the 1990’s (R ≈ 5 km)
accelerated electrons at energies of E = 160 GeV. Estimate the energy loss due to
synchroton radiation in one revolution at the LEP.

11. [1pt] There is right now a discussion whether the next electron-positron accelerator
should be linear or circular. CERN has a plan for a future circular collider with
energy 2 times larger than LEP and a tunnel which is 3 times larger than LEP.
What is the increase in energy loss compared to LEP?
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