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Scores:

• Problem 1 (Nodes in Quantum Mechanics): 33%

• Problem 2 (A Blue Sky): 19%

• Problem 3 (A Sticky Surface): 20%

• Problem 4 (Photographing a Relativistic Sphere): 28%

Suggestion: Try to first do the easiest parts of each exercise, and then try to do the
harder parts on as many exercises as possible. This is a difficult exam, so do not be
discouraged if you get stuck on an exercise.
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1 Nodes in Quantum Mechanics
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Figure 1: A smooth confining potential.

In this exercise we will explore the one dimensional Schrodinger equation

− ~2

2m
ψ′′(x) + V (x)ψ(x) = E ψ(x) (1)

where V (x) is some smooth potential tending to plus infinity as x→ ±∞ as depicted in
figure 1.

Recall that we can think of (1) as a Sturm-Liouville problem. Namely we can always
assume ψ(x) vanishes as x → −∞. Then, for a generic E in (1) the wave function
diverges at x → +∞. There is however a discrete set energies E0, E1, E2, . . . for which
the corresponding wave functions – denoted as ψ0, ψ1, ψ2 . . . – also vanish at x → +∞
and are thus called normalizable wave functions. The En are the physical energies of the
system and we will henceforth refer to the corresponding ψn as the physical solutions.
In what follows we will (correctly) assume that they are smooth.

Warm-up

1. [2pt] Show that there is no degeneracy. That is, we can not have two different
physical solutions ψ1, ψ2 with the same energy E1 = E2.

2. [2pt] Show that any physical solution can be taken to be a real function.
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3. [2pt] Show that two physical solutions with different energies are orthogonal with
respect to the norm 〈ψ|φ〉 ≡

∫
dxψ(x)∗φ(x).

In what follows physical solutions are always normalized so that 〈ψn|ψm〉 = δnm.

4. [2pt] Consider now the energy functional

E[ψ] = T [ψ]+V [ψ] , T [ψ] ≡ +
~2

2m

∫
dx |ψ′(x)|2 , V [ψ] ≡

∫
dx V (x)|ψ(x)|2 .

(2)
Show that for physical solutions E[ψn] = En.

5. [2pt] Consider a trial wave function ψ(x). Since energy eigenstates for a complete
base of states, we can always expand it out as ψ(x) =

∑
n cnψn(x). Write down

the condition on the cn’s so that ψ is normalized as 〈ψ|ψ〉 = 1.

6. [2pt] Let E0 be the ground state energy, i.e. E0 < E1 < E2 < . . . . Show that
E[ψ] ≥ E0 for any normalized trial wave function.

Nodes

In this second part of the exercise we will establish that the n-th excited state ψn has
exactly n− 1 zeros in the real axis (plus a few other simple related facts).

It will often be convenient to use the results of the previous part. Feel free to use
them even if you did not do that part of the exercise.

7. [4pt] At the end we will prove that the ground state wave function ψ0 has no nodes
in the real axis. For now establish the following simpler fact: We can have at most
a single physical solution without nodes.

8. [4pt] Consider ψ to be a solution to (1) with energy E.

As mentioned below (1), we define this wave function to vanish as x→ −∞. Then,
for a generic E it will diverge as x→ +∞ unless E is a physical energy.

Show that

ψ(x)ψ′n(x)− ψ′(x)ψn(x) =
2m

~2
(E − En)

x∫

−∞

dy ψ(y)ψn(y) (3)

9. [4pt] Consider now an energy E slightly larger than some En. Then ψ will be very
close to ψn except that at very large x where it blows us while ψn vanishes.

What is the sign of the right hand side of (3)?

10. [4pt] Now focus on the vicinity of a zero of ψn which we denote as ψn(x∗) = 0.
Without loss of generality assume ψn is negative/positive to the left/right of x∗
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Figure 2: From a trial wave function with zeros we construct a new wave function without
zeros by first constructing |ψ| (on the left) and then a new function ψ̃ from that one
by excising a small segment of length ε around each zero of ψ and replacing the wave
function there by a linear interpolation (on the right). The resulting wave function ψ̃ is
positive everywhere.

respectively such that ψ′(x∗) > 0. By continuity ψ should also change from negative
to positive values in the neighbourhood of x∗.

Show that the zero of ψ is to the left of x∗.

You can now jump to the next point 11 and read the following comments
later. (Nothing to solve here.) A picture is now clearly emerging about what
goes on as we increase the energy smoothly all the way from one eigenstate with
E = En to the next with E = En+1. As we increase E all zeros move to the
left. In particular, as soon as E bigger than En a new zero comes from x = +∞
(where ψn vanishes) so that ψ has one more finite zero (at very large values of x)
compared to ψn. By the point the energy reaches En+1 that zero moved to some
finite value. The wave function ψ (which is now equal to ψn+1) vanishes at infinity
once again. As we increase E further we get one more zero coming form infinity
and so on. To confirm this picture we can establish the following theorem: between
any two consecutive zeros of a physical solution ψn1 there is a zero of ψn2 for any
n2 > n1. To prove this, we denote the two consecutive zeros as xL and xR and
show – basically following the same sort of reasoning leading to (3) – that

ψ′n1
(xR)ψn2(xR)− ψn1(xL)ψ′n2

(xL) =
2m

~2
(En2 − En1)

xR∫

xL

dy ψn1(y)ψn2(y) (4)

Then we assume that ψn2 does not change sign between xL and xR and reach a
contradiction.
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11. [5pt] Finally, the last missing element in the argument above is to show that the
ground state wave function ψ0 has no zeros in the real axis. This is what we turn
to now. To establish this we turn to the energy functional (2).

(a) Show that E[ψ] = E[|ψ|].
(b) Suppose the function ψ has some zeros. Then, the function |ψ| is smooth

except at its zeros where it has cusps as depicted in figure 2. Consider now
a new function ψ̃ which is obtained from this function as indicated in figure
2. Note that ψ̃ has no zeros. We want to compute the variation δE =
E[ψ̃] − E[|ψ|]. First we note that the kinetic energy dominates over the
potential energy when computing this. Indeed,

i. Explain why δV ≡ V [ψ̃]− V [|ψ|] = O(ε3)

ii. Explain why δT ≡ T [ψ̃]− T [|ψ|] = O(ε)

iii. Show that δT is negative.

(c) Explain why the ground state wave function ψ0 has no zeros in the real axis.

And we are done. To summarize:
We learned that any smooth potential such as that in figure 1 we have a non-

degenerate spectrum E0 < E1 < E2 . . . . The ground state wave function vanishes
at infinity and has no nodes in the real axis. The first excited state ψ1 has one finite
zero. The second excited state ψ2 has two zeros, one to the left of the zero of ψ1 and
one to its right. The third excited state ψ3 has three nodes, one in between the zeros of
ψ2, one to their left and another one to their right. The next state has four zeros and so
on. Basically, and in more physical terms, what we saw was that adding nodes entails a
high cost kinetic energy-wise and this translates into these results.
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2 A Blue Sky
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In this question we will be concerned with the interaction of an electromagnetic wave
with an atom, which we take to be a hydrogen atom, in the nonrelativistic limit. As
it turns out, since the electron mass me is 2000 times smaller than the proton mass
the dominant interaction comes from the electron and we will therefore focus on its
response to the electromgnetic wave. We will model the hydrogen atom very crudely by
a harmonic oscillator with a natural frequency denoted by ω0.

Consider a plane electromagnetic wave with frequency ω polarized in such a way that
the electric field is in the ẑ direction and can be written as:

~E = E0 sin(ωt) ẑ

1. [2pt] Write the equation of motion for the electron and show that the solution is
(−e is the electron charge):

z(t) =
eE0

m(ω2 − ω2
0)

sin(ωt) (5)
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2. [1.5pt] Therefore the electron oscillates back and forth in the direction of the
electric field and will emit radiation. We can think of the motion of the electron as
a current produced by a charge q(t) = −ez(t). Show that the associated current
can be written as:

I(t) = I0 cos(ωt) (6)

What is I0?

3. [3pt] We now want to compute the vector potential generated by the oscillation
of the electron far away from the atom using the retarded potential:

~A(~r, t) =
µ0

4π

∫ ~J(~r′, t− |~r′ − ~r|/c)
|~r′ − ~r|

d3r′ (7)

Writing ~J(~r, t) = I(t)ẑδ(x)δ(y), noting that ~r′ = z′ẑ in this case and assuming
that the electron moves in the range −l/2 < z < l/2 show that in the limit r � l

~A(~r, t) =
µ0

4π
l
I(t− r/c)

r
ẑ (8)

which has a typical 1/r behaviour of a radiation field.

4. [3pt] Using the Lorentz gauge condition which in the units we are using reads:

~∇ · ~A+ µ0ε0
∂Φ

∂t
= 0 (9)

show that the scalar potential far away from the electron is given by:

Φ(~r, t) =
l

4πε0c

z

r

I(t− r/c)
r

(10)

5. [4.5pt] Compute the electric and magnetic fields emitted by the electron in the
hydrogen atom when hit by the electromagnetic wave.

6. [2pt] Compute the Poynting flux of the radiation emitted by electron

~u =
~E × ~B

µ0

(11)

showing that the energy flux is radially outwards from the source and that it is
proportional to ω2I2

0 .

7. [3pt] In general the frequency of the electromagnetic wave is much smaller than
the typical frequency of the atom ω � ω0. Explain in this case why is the sky blue.

7



3 A Sticky Surface

Consider a perfect gas of N particles of mass m in a large volume V and a temperature
T . This gas is in contact with a surface where some of these particles can be adsorbed
onto. A simple model for this is to imagine the adsorbing surface as a lattice of M
binding sites where the particles can be adsorbed onto. Each such site is either empty
(in which case the associated partition function equal to 1) or occupied (with a partition
function q = e−ε/kT ).

M sites where 
gas particles 
can stick to

Gas of particles

The partition function for the combined system of gas plus surface then reads

Z =
∑

configurations

e−
1
kT

En =
M∑

Q=0︸︷︷︸
A

1

223

M !

Q!(M −Q)!︸ ︷︷ ︸
B

1

223

qQ

︸︷︷︸
C

1

223

1

(N −Q)!︸ ︷︷ ︸
D

1

223

V N−Q1

2

(
2πmkT

h2

)3(N−Q)/2

︸ ︷︷ ︸
E

(12)
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Figure 3: Langmuir Isotherm.

1. [4pt] Explain the origin of each of the elements in the partition function indicated
by the letters A−E. You can regroup them if you prefer to explain the full partition
function in a different way.

2. [4pt] Show that in the limit when the number of gas particles is much larger than
the number of sites of the surface, we have

Z ' eN√
2πN

(
V

Nλ3

)N

(1 + α)M , λ2 ≡ h2

2πmkT
(13)

What is α?

Hint: For large N Stirling yields N ! '
√

2πNe−NNN .

3. [4pt] Explain why in this limit N �M the pressure P (V,N, T ) = kT ∂ logZ/∂V
is the same as that for an ideal gas – without any surface.

4. [4pt] Compute the average occupation fraction θ = number of particles in the surface
number of sites in the surface

as
a function of the pressure P , temperature T , adsorption partition function q and
thermal wavelength λ – still in the same thermodynamic limit N � M . As a
function of P you should obtain something as sketched in figure 3. This curve is
called the Langmuir Isotherm.

5. [4pt] What happens to θ in each of the following limits. Explain the physics of
each result.

• P → 0

• P →∞
• T → 0 with positive binding energy ε.

• T → 0 with negative binding energy ε.

• T →∞.
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4 Photographing a Relativistic Sphere

Moving objects contract. Careful observations that simultaneously measure the position
of different parts of an object have clearly demonstrated this contraction. In such an
observation, the observer collects photons that left the object at the same time. These
photons reach the observer at different times.

In this problem you will examine what you will see if you look at a moving object
(or take a picture of a moving object). By seeing we mean collecting all of the photons
that arrive at your eye or camera1 at a particular time. These photons left the object at
different times. The difference between observing and seeing is illustrated in figure 4.

OBSERVING
PHOTONS LEAVE THE OBJECT AT THE SAME TIME

t1 t2 t3 t4 t5

t0

t0
t0

t0

t0 t1

t2
t3

t4

t5

t0 t0 t0 t0 t0

(ALL TIMES MEASURED BY THE 
PHOTOGRAPHER AT REST)

SEEING
PHOTONS ARRIVE AT THE CAMERA AT THE SAME TIME

Figure 4: The difference between “observing” and “seeing” a moving object.

1We assume the camera has instantaneous shutter speed. To simplify things further, we assume
throughout the object is far enough such that the visual solid angle is sufficiently small.
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Warm-up

1. [4pt] Relativistic Aberration Law: A photon propagates at an angle α with respect
to the x-axis of an inertial frame S of first observer. The first observer moves in
the x′ direction with speed v = βc in the inertial frame O′ of the second observer.
The x and x′ axes are parallel. This is demonstrated in figure 5.

x

y

x0

y0

~k~k0

↵↵0

Figure 5: A photon viewed by two observers moving respect to each other.

(a) How do the space-time coordinates transform under Lorentz transformation?

(b) Show that the angle α′ between the x′ axis and the direction of propagation
of the photon in frame O′ is:

sinα′ =

√
1− β2 sinα

1 + β cosα
(14)

2. [5pt] Lorentz Contracted Sphere: A sphere of rest diameter D is traveling to the
right with velocity v = βc relative to observer O. The sphere is observed from O at
an angle θ = π/2, and is very far from the observer which we call the photographer,
see figure 6. Write out the equation for the ellipsoid corresponding to the Lorentz
contracted sphere observed in the photographer’s frame.

SPHERE FRAME PHOTOGRAPHER FRAME

v

-v

⇡

2

Figure 6: A sphere Lorentz contracts and is therefore observed as an ellipsoid.
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Seeing a Moving Sphere

3. [5pt] A sphere of rest diameter D is traveling to the right with velocity v = βc
relative to observer O. The sphere is seen from O at an angle θ = π/2, and is very
far from the observer. In this exercise we will see that this sphere will be seen as
a sphere by a far away observer, see figure 11. As indicated on the left of figure
7, in the photographer’s frame photons leave the object perpendicular to it. Show
that in the sphere frame – magnified on the right in figure 7 – these photons leave
the sphere at an angle α with the value indicated in the figure.

PHOTOGRAPHER FRAME

PHOTON 
TRAJECTORY

SPHERE’S 
VELOCITY V

⇡

2

ACCORDING TO THE 
PHOTOGRAPHER, THE 
PHOTON LEAVES THE 
SPHERE PERPENDICULARLY 
TO THE X AXIS (THE 
DIRECTION OF MOTION)

SPHERE FRAME

FOR AN INERTIAL OBSERVER TRAVELING 
WITH THE SPHERE, THE ANGLE IS INSTEAD 
GIVEN BY 

↵

sin↵ =

r
1 � v2

c2

Figure 7: Photons leave the sphere at different angles (measured with respect to the
direction of motion x) in the photographer and sphere frame.

4. [5pt] As illustrated in figure 8 using the sphere frame, the photographer will ac-
tually observe the sphere as rotated. What is the angle δ? What are the distances
∆xsphere and ∆ysphere in the sphere frame?

Note that it is also possible to understand the tilting directly in the photographer’s
frame as depicted in figure 10 but we will not need it here.

5. [4pt] In the photographer frame show that the distance along the direction of

motion between the farthest simultaneously visible points A and B is ∆x
(2)
photo =

D(1− β2).

6. [5pt] Compute all other distances in figure 10. Most importantly, you should obtain
that ∆xphoto = ∆yphoto = D, so that the sphere is actually seen as spherical! (Since
in the z direction there is no contraction, the diameter is still D there also.)

A photo of a relativistic sphere is depicted in figure 11.

To summarize: While spheres are indeed observed as Lorentz contracted they are still
seen as spheres, albeit rotated ones.

12



SPHERE FRAME

�xsphere

�ysphere

↵

�

Figure 8: Since the photons leave the sphere at an angle, those in the dark region will
not be able to propagate towards the photographer while those in the light region will.

PHOTONS FROM HERE  PASS 
BY THE DASHED LINE BEFORE 
THE SPHERE GETS THERE

PHOTONS FROM HERE  GET 
HIT BY THE SPHERE AND DO 
NOT MANAGE TO GET TO THE 
DASHED LINE IN TIME

Sphere displacement during
an infinitesimal time dtphotographer

Trajectory of a photon
as the sphere moves during
an infinitesimal time dtphotographer

PHOTOGRAPHER FRAME

Figure 9: In the photographer’s frame we see that the tilting can be explained by studying
the collision of the sphere with travelling photons. (In the opposite side of the sphere
the transition is explained in similar terms where now the sphere moves away from the
photons instead.)
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Photon that leaves 
the sphere last 
according to the 
photographer.

(All photons arrive 
at the camera at 
the same time by 
definition of seeing)

Photon that leaves 
the sphere first 
according to the 

photographer.

(All photons arrive 
at the camera at 

the same time by 
definition of seeing)

PHOTOGRAPHER FRAME

�y
(1)
photo

�x
(2)
photo�x

(1)
photo

SPHERE’S 
VELOCITY V

�xphoto

�yphoto

Figure 10: Various relevant distances in the photographer’s frame.

Figure 11: Photograph of a moving sphere.
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