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1 Bells Paradox

Consider two identical rockets initially lying at rest with respect to some given inertial
congruence S. The rockets are connected by a thin cable as shown in the figure.

t<0 

t=0 

x 

t 

At t = 0 (according to the inertial congruence S), the rockets are simultaneously (and
gently) launched. Then, they accelerate smoothly for some time along some axis accord-
ing to the equations of motion

rocket 1: L(t) =
√

(ct)2 + 25, 0 ≤ ct ≤ 10 , (1)

rocket 2: L(t) =
√

(ct)2 + 25 + 7, 0 ≤ ct ≤ 10 , (2)

where (t, L) are Cartesian coordinates (as taught in the course) defined by the original
inertial congruence S. Finally at ct = 10 both engines are switched off, after which the
rockets proceed inertially.

The cable which connects the rockets breaks down when either it is compressed by
80% (or more) or stretched by 10% (or more) of its proper length.

1. [20pt] Does the cable break down eventually? Explain your answer.
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2 Master Equation for a Decaying Qubit

Consider a spin 1/2 particle with a Hamiltonian H = 1
2
~Ω · ~σ (where ~Ω = Ω~ez with ~ez

a unit vector and ~σ the vector formed by the three Pauli operators). The qubit decays
to the state |0〉 due to the interacts with an environment. This process is described
by a Limbladt master equation with only one Limbladt operator: L1 = γ1/2σ−, where
σ− = |0〉〈1| is the lowering operator. .

1. [6pt] Write the master equation.

2. [7pt] Use the master equation to obtain evolution equations for the polarization
vector of the qubit (whose componentts are equal to the expectation value of the
three Pauli operators, i.e., ~p = Tr(ρ~σ).

3. [7pt] Interpret the results and describe the evolution of the polarization vector in
the Bloch sphere.

Hint:

The general form of the Limblad master equation is the following

ρ̇ = −i[H, ρ] +
∑
b

(2LbρL
†
b − L†bLbρ− ρL†bLb), (3)

where ρ is the density matrix, H is the Hamiltonian and Lb are some arbitrary operators.
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3 Lattice Wave Packets

n = 0n = �L n = +L
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Figure 1: Three evolutions, all starting at positions −L, 0, L but evolving quite differ-
ently. In the first one they meet pairwise at well separated points. In the second case
they meet in the middle, at n = 0 while in the last case they also meet all three at the
same point but this time on the left.

Consider an infinite Heisenberg spin chain with the same Hamiltonian we saw in the
lectures,

Ĥ =
∑
n

(In,n+1 − Pn,n+1) . (4)

1. [5pt] Consider a wave packet at t = 0:

ψinitial(n) =

π∫
−π

dk e−a(k−p)
2+ikn (5)

where n is an integer denoting the spin chain site.

(a) What is ψ(n, t)?, i.e. how does this wave packet evolve in time?

(b) What is the velocity with which it moves?

(c) Write down a translated wave packet which starts at some ni 6= 0 at t = 0.

2. [10pt] Write down three initial wave packets ψinitial(n1, n2, n3) whose time evolu-
tion would lead to the three situations in figure 1.

3. [5pt] Suppose now we deform a bit the Hamiltonian to something else (which
would generically be non-integrable of course). For example, we could imagine
adding a next-to-nearest neighbour interaction changing Ĥ into

Ĥ =
∑
n

((In,n+1 − Pn,n+1) + β (In,n+2 − Pn,n+2)) with |β| < 1/2 . (6)

Consider now the time evolution of the very same three wave packets you wrote
down in the previous point with a new deformed Hamiltonian. Give a rough
qualitative description of what you expect to get replacing figure 1.
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4 Particle Physics
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Figure 2: Left: Kinematics for e+e− → µ+µ− scattering. The thick arrows indicate the
z-component of the spin (where, for the e+ and e−, the z-axis is the horizontal, i.e. beam
axis). Right: Dominant Feynman diagram corresponding to photon exchange, giving
rise to the previous process at energies below tens of GeV.

Consider the scattering of an electron e− against a positron e+ in the center of mass
(CM) frame. Assume the center of mass energy to be large enough to create a µ+µ−

pair. The latter are, of course, produced back to back, but they can fly off along an
axis different from the initial beam axis (which we call the z-axis). Define the scattering
angle θ as the angle between the momentum of the incident e− and the momentum of
the scattered µ−, as shown in the left diagram above.

In addition, assume you have prepared you beams so that they are polarized as
shown: the e− is “right-handed”, (i.e. its z-spin component is in the same direction as
its momentum, sz = +1/2). The e+ is instead “left-handed”: its z-spin component is in
the opposite direction as its momentum, which again means sz = +1/2. Assume also
that your detectors can measure the spin of the final muons (specifically, the projection
along the momentum).

The above process can proceed through photon exchange, as shown in the right
diagram above. Assuming that the CM energy is much larger than both the electron
and muon masses, the corresponding differential scattering cross section as a function of
scattering angle θ and the total center of mass energy ECM is given by

dσ

dΩ
(e+(↓) e−(↑)→ µ+(↓)µ−(↑)) =

α2

4E2
CM

(1 + cos θ)2 ,

where the arrows indicate the projection of the spin along the direction of momentum, and
α is the fine structure constant. Physically, the previous expression gives the probability
(density) that the muons be produced at an angle θ (given ECM).

1. [5pt] Based on angular momentum conservation and your knowledge about the
photon, give a physically transparent interpretation of the above angular depen-
dence.
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2. [5pt] From the understanding gained in the previous part, guess the angular de-
pendence for the process

dσ

dΩ
(e+(↓) e−(↑)→ µ+(↑)µ−(↓)) .

What about

dσ

dΩ
(e+(↑) e−(↑)→ µ+(↑)µ−(↑)) ?

3. [5pt] In addition to photon exchange, there is a contribution from Higgs exchange!
Based on the known mass of the electron and muon (me ≈ 0.5 MeV and mµ ≈
100 MeV), the mass of the Higgs (125 GeV), and what you have learned about
the couplings of the Higgs boson to these particles, estimate how much smaller the
Higgs contribution is compared to the photon exchange process above.

4. [5pt] Now imagine a world where the electroweak scale instead of having the value
v = 174 GeV had a much smaller value of order the muon mass (we assume that
the electron and muon masses have the same values as in our universe). For the
purpose of this gedanken experiment, forget about anything that has to do with
the QCD interactions (protons, etc. do not play a role) or other SM particles not
explicitly mentioned in this problem.1 What angular dependence do you expect
for the differential scattering cross section for polarized experiments as described
above? Based on this observation, can you propose a way to establish the existence
of the Higgs boson in this alternate universe?

1To be clear, in this alternate universe you may focus on electrons, muons, photons and Higgs bosons
only.
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5 Scattering Amplitudes

Gluons are particles with helicity ±1 while gravitons possess helicity ±2. Recall that the
little group of the Poincare group in four dimensions imposes severe constraints on scat-
tering amplitudes. Explicitly, an amplitude of n particles with helicities {h1, h2, . . . , hn}
must satisfy

A({t1λ1, t−11 λ̃1}, . . . , {tnλn, t−1n λ̃n}) =

(
n∏
a=1

t−2haa

)
A({λ1, λ̃1}, . . . , {λn, λ̃n}).

1. [2pt] Show that the square of an amplitude of n gluons transforms exactly as an
amplitude of n gravitons under the little group.

In this problem you will explore the possibility that graviton amplitudes can be
constructed from products of gluon amplitudes.

Let’s start with some dimensional analysis. Let g and κ be the coupling constants
for the interaction of gluons and gravitons respectively. g is dimensionless while κ has
dimensions of inverse mass2, i.e. m−1.

2. [3pt] The coupling dependence of n-particle amplitudes of gluons and gravitons at
tree-level is gn−2 and κn−2 respectively. Therefore it is useful to write

Agravitons
n = δ4(k1+k2+. . .+kn)κn−2Agravitons

n and Agluons
n = δ4(k1+. . .+kn)gn−2Agluons

n

so that the quantities An, known as stripped amplitudes, do not depend on the
coupling constants. An can then be called full amplitudes. Recall that stripped
amplitudes Agluons

n have dimension m4−n.

Use dimensional analysis to find the power w of Mandelstam invariants sab =
(ka + kb)

2 that makes the following schematic formula dimensionally correct

Agravitons
n = sw(Agluons

n )2 (7)

(Hint: full n-particle amplitudes Agravitons
n and Agluons

n have the same dimension.)

In the rest of this problem we restrict our attention to amplitudes with two negative
helicity particles, say i and j, and n − 2 positive helicity ones. These amplitudes of
gluons were first computed and simplified by Parke and Taylor in 1986. The result is

Agluons
n (i−, j−) = Tr(T a1 · · ·T an)PT(1, 2, . . . , n) + . . . (8)

where

PT(1, 2, . . . , n) :=
〈i j〉4

〈1 2〉〈2 3〉 · · · 〈n− 1 n〉〈n 1〉
is known as a partial amplitude3. The . . . in (8) represent a sum over permutations of

2κ2 = 32πGN in units where GN = 1/M2
Planck is Newton’s gravitational constant and MPlanck is

Planck’s mass.
3The notation PT refers to Parke-Taylor. Also, recall that 〈a b〉 := εαβλ

α
aλ

β
b .
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the labels.
It took until 2012 for a simple formula to be constructed for gravity amplitudes! The

formula uses a n× n matrix Φ defined by

Φab =

{
sab
〈a b〉2 , a 6= b;

−∑n
c=1,c 6=a

sac
〈a c〉2

〈c x〉2
〈a x〉2 , a = b.

(9)

Here x is a reference spinor that can be chosen arbitrarily.
This matrix has vanishing determinant. In fact, the first time one of its submatrices

has non-vanishing determinant is when three rows, say a, b, c and three columns, say
p, q, r, are removed. Let (Φ)abcpqr denote the (n− 3)× (n− 3) matrix obtained in this way.
Quite surprisingly, the combination

det(Φ)abcpqr
(〈a b〉〈b c〉〈c a〉)(〈p q〉〈q r〉〈r p〉)

turns out to be independent of the choice and it is called the reduced determinant of Φ,
or det′Φ. Hodges’ formula for a graviton amplitude is astonishingly simple

Agraviton
n (i−, j−) = 〈i j〉8det′Φ. (10)

3. [2pt] Compute Agraviton
4 (i−, j−) explicitly. (Hint: Choose abc and pqr so that no

diagonal terms of Φ enter in (Φ)abcpqr).

4. [3pt] Show that Agraviton
4 (i−, j−) can be written as a product of two possibly dis-

tinct 4-gluon partial amplitudes times Mandelstam invariants consistent with your
dimensional analysis result in equation (7).

5. [3pt] Compute Agraviton
5 (i−, j−) explicitly.

6. [7pt] Show that each of the two terms obtained by expanding the 2 × 2 determi-
nant det′Φ can be written as the product of two 5-gluon partial amplitudes times
Mandelstam invariants.

For some further comments with some suggestions for future research (unrelated to
the exam!) see very end of the document.
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Future research (Freddy’s Cachazo’s problem complement):

As it turns out, a direct expansion the 3× 3 determinant in a six-graviton amplitude
leads to terms that cannot be written directly as the product of two six-gluon partial
amplitudes. In order to see more clearly what the problem is, it is convenient to introduce
a graphical representation. Draw six vertices with labels {1, 2, . . . , 6}. For each factor of
〈a b〉 in the denominator of a given term in the expansion of det′Φ draw a line connecting
two vertices a and b, then you should find a 4-regular graph. This means that each vertex
has degree 4. A gluon-amplitude corresponds to a Hamiltonian cycle of the graph, i.e.,
a connected closed path in the graph that visits every vertex exactly once. Convince
yourself that the 4-regular graphs you found do not admit a Hamiltionan decomposition,
i.e., do not contain two disjoint (not sharing edges) Hamiltonian cycles. However, this
situation can be fixed by using that the quantities R(a, b, c, d) := 1/〈a b〉〈b c〉〈c d〉〈d a〉
satisfy the following identity R(a, b, c, d) + R(a, b, d, c) + R(a, d, b, c) = 0. Using this
identity, show that each term in the expansion of det′Φ can written as two graphs that
admit Hamiltonian decompositions and therefore can be written as the product of two
six-gluon partial amplitudes. This means that a six-graviton amplitude can be written
as a sum of twelve products of two six-gluon partial amplitudes. Try to generalize this
to seven and more gravitons.
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